政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/119323
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  全文笔数/总笔数 : 113869/144892 (79%)
造访人次 : 51889410      在线人数 : 505
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    请使用永久网址来引用或连结此文件: https://nccur.lib.nccu.edu.tw/handle/140.119/119323


    题名: 多維度拉丁方陣及其臨界集之構造與應用
    The Construction and Applications of Latin k-hypercube and Its Critical Sets
    作者: 陳淑美
    Chen, Shu-Mei
    贡献者: 左瑞麟
    Tso, Ray-Lin
    陳淑美
    Shu-Mei Chen
    关键词: 拉丁方陣
    拉丁立體方陣
    多維度拉丁方陣
    臨界集
    秘密分享方案
    Latin squares
    Latin cubes
    Latin k-hypercubes
    Critical set
    Secret sharing schemes
    日期: 2018
    上传时间: 2018-08-10 11:11:39 (UTC+8)
    摘要: 「資訊安全」之相關研究如密碼學(Cryptography)、秘密分享方案(Secret sharing schemes)經常運用數學技術來設計與實踐,如1994年Cooper,Donovan和Seberry便舉出了如何運用拉丁方陣(Latin squares)來實踐秘密分享方案。
    拉丁方陣為組合設計(Combinatorial designs)中的一部分,於現代密碼學及編碼的設計,有相當多的貢獻。
    本論文將以組合設計中的拉丁方陣為基礎,進一步發展出拉丁立體方陣(Latin cubes)的相關方法論,包含如何建構拉丁立體方陣、如何找出拉丁立體方陣的臨界集(Critical sets)、如何由拉丁立體方陣的臨界集反推出拉丁立體方陣等,藉此增強拉丁方陣應用的複雜度及多元性,本論文亦依據拉丁立體方陣相關方法論發展出多維度拉丁方陣(稱之為Latin k-hypercubes)之相關方法論,也成功地將所提出之方法論運用至資訊隱藏領域。希望本論文所提出之方法論,後續可於資訊安全各類研究領域發展出更多相關應用。
    Researches related to "information security" such as Cryptography and Secret sharing schemes are usually designed and constructed using mathematical techniques. For example,in 1994 Cooper, Donovan and Seberry showed the method how to use the Latin square to design secret sharing schemes.
    The design of Latin squares are in the scope of the Combinatorial designs, and they have considerable contributions to Cryptography and coding theory.
    This thesis will develop the Latin cubes methodology based on the concepts of Latin squares and their critical sets. We will introduce how to construct a Latin cube,how to find the critical sets of the Latin cube,and how to rebuild the Latin cube using its critical sets and so on. The idea introduced here can be used to increase the complexity and diversity of the application of the Latin squares. Based on the methodology of Latin cubes,we will also develop the multi-dimensional Latin squares (called the Latin k-hypercubes) methodology,and show how it can be successfully applied to the areas of information hiding.
    We hope that the methodologies proposed in this thesis can be followed by more relevant applications in various fields of information security researches.
    參考文獻: [1] A. P. Street.(Math. 21 ,1992).Defining sets for t-designs and critical sets for Latin squares.New Zealand J.
    [2] A. P. Street and D. J. Street.(1987).Combinatorics of Experimental Design.Oxford University Press, Oxford.
    [3] B. Smetaniuk.(Math. 16 ,1979).On the minimal critical set of a Latin square.
    [4] Blakley,G. R.(1979).Safeguarding cryptographic keys . Proceedings of the National Computer Conference 48.
    [5] Chin-ChenChang ,Yung-ChenChou,The Duc Kieu.(2008).An Information Hiding Scheme Using Sudoku.The 3rd Intetnational .Conference on Innovative Computing Information and Control (ICICIC`08) 978-0-7695-3161-8/08 © 2008 IEEE
    [6] Cooper, J.,Donovan, D. , Seberry, J..( 4,1991) . Latin squares and critical sets of minimal size. Australas. J. Combin.
    [7] Donovan, D., Cooper, J., Nott, D.J., Seberry, J..( 1995 ) .Latin squares: critical sets and their lower bounds. Ars Combin. 39
    [8] Donovan, D., Cooper, J..( 1996 ) .Critical sets in back circulant Latin squares. Aequationes Math.
    [9] D. Curran and G. H. J. van Rees.( 1978) . Critical sets in Latin squares. Congr. Numer. 22
    [10] D. Raghavarao.(1988).Constructions and Combinatorial Problems in Design of Experiments. Dover Publications, New York
    [11] D. R. Stinson.(1996).Combinatorial Designs with Selected Applications. Lecture Notes, Dept. Comput. Sci., Univ. Manitoba, Winnipeg.
    [12] Daniel R. Droz.(2016).Orthogonal Sets of Latin Squares and Class-r Hypercubes Generated by Finite Algebraic Systems. Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor in Eberly College of Science of the Pennsylvania State University.
    [13] D. R. Stinson and G. H. J. van Rees.(1982).Some large critical sets. Congr. Numer. 34.
    [14] Hung-Li Fu.(2002).Combinatorial Designs ( Lecture Notes ).available at http://hlfu.math.nctu.edu.tw/course.php?YEAR=91.
    [15] J. Cooper, D. Donovan and J. Seberry.(Appl. 12 ,1994). Secret sharing schemes arising from Latin square. Bull. Inst. Combin.
    [16] Jerzy Wojdyło(Southeast Missouri State University).(2007). Latin Squares, Cubes and Hypercubes. available at https://www.slideserve.com/vangie/Latin-squares-cubes-and-hypercubes.
    [17] Pria Bharti, Roopali Soni.(November 2012).A New Approach of Data Hiding in Images using Cryptography and Steganography.International Journal of Computer Applications (0975 – 8887) Volume 58– No.18.
    [18] R. Tso, Y. Miao.(2017).A survey of secret sharing schemes based on Latin squares.(Conference Paper),13th International Conference on Intelligent Information Hiding and Multimedia Signal Processing, IIH-MSP 2017.
    [19] R. Mathon and A. Rosa.(1996) . 2-(v,k,λ) Designs of small order, in C. J. Colbourn and J. H. Dinitz, eds..The CRC Handbook of Combinatorial Designs, CRC Press, Boca Raton
    [20] Shamim Ahmed Laskar1 and Kattamanchi Hemachandran .(December 2012).High Capacity data hiding using LSB Steganography and Encryption. International Journal of Database Management Systems ( IJDMS ) Vol.4, No.6, December 2012.
    [21] Shamir, Adi,(1979).How to share a secret. Communications of the ACM 22 (11).
    [22] Shamir, A.(1979) . How to share a secret, Comm. ACM 22.
    [23] Smetaniuk, B.(1979) . On the minimal critical set of a Latin square. Util. Math. 16, 97–100
    [24] Steven T. Dougherty , Theresa A. Szczepanski.(2008).Latin k-hypercubes .Australasian Journal of Combinatorics Volume 40.
    [25] Stinson, D.R., van Rees, G.H.J. .(1982) . Some large critical sets. Congr. Numer. 34, 441–456.
    [26] Street, A.P.(Math. 21, 1992) . Defining sets for t -designs and critical sets for Latin squares, New Zealand J.
    [27] Tamara Gomez, Phoebe Coy.(2015).Latin Squares: Critical Sets.available at http://web.math.ucsb.edu/~padraic/ucsb_2014_15/ccs_problem_solving_w2015/Latin%20Squares%20Presentation%201.pdf.
    [28] Vaipuna Raass.(2016) .Critical Sets of Full Latin squares.A thesis submitted in fulfilment of the requirements for the DegreeOf Doctor of Philosophy at the University of Waikato.
    [29] 冷輝世,游孟霖 ,曾顯文.(2014).基於 LSB 的適性高負載資訊隱藏法. International Journal of Science and Engineering Vol.4 No.1:225-228
    [30] 維基百科https://en.wikipedia.org/wiki/Hypercube
    [31]維基百科拉丁方陣的數量https://zh.wikipedia.org/wiki/%E6%8B%89%E4%B8%81%E6%96%B9%E9%99%A3
    描述: 碩士
    國立政治大學
    資訊科學系碩士在職專班
    105971006
    資料來源: http://thesis.lib.nccu.edu.tw/record/#G0105971006
    数据类型: thesis
    DOI: 10.6814/THE.NCCU.EMCS.005.2018.B02
    显示于类别:[資訊科學系碩士在職專班] 學位論文

    文件中的档案:

    档案 大小格式浏览次数
    01.pdf6604KbAdobe PDF2296检视/开启


    在政大典藏中所有的数据项都受到原著作权保护.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈