政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/118964
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  全文筆數/總筆數 : 113822/144841 (79%)
造訪人次 : 51798347      線上人數 : 493
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    政大機構典藏 > 資訊學院 > 資訊科學系 > 學位論文 >  Item 140.119/118964
    請使用永久網址來引用或連結此文件: https://nccur.lib.nccu.edu.tw/handle/140.119/118964


    題名: 中文裁判書之要旨擷取:以最高法院裁判書為例
    Automatic Extraction of Gist of Chinese Judgments of the Supreme Court
    作者: 陳冠群
    Chen, Kuan-Chun
    貢獻者: 劉昭麟
    Liu, Chao-Lin
    陳冠群
    Chen, Kuan-Chun
    關鍵詞: 法資訊學
    自動摘要
    自然語言處理
    Legal informatics
    Automatic summarization
    Natural language processing
    日期: 2018
    上傳時間: 2018-07-27 12:21:16 (UTC+8)
    參考文獻: [1] Jerome H. Friedman. 2002. Stochastic gradient boosting. Computational Statistics & Data Analysis. 38, 4 (February 2002), 367-378. DOI: http://dx.doi.org/10.1016/S0167- 9473(01)00065-2
    [2] Ethem Alpaydin. 2010. Introduction to Machine Learning (2nd ed.). The MIT Press. 489-493.
    [3] 謝淳達。2005。利用詞組檢索中文訴訟文書之研究。碩士論文。國立政治大學,台北市,台灣。
    [4] 藍家樑。2009。中文訴訟文書檢索系統雛形實作。碩士論文。國立政治大學,台北市,台灣。
    [5] 廖鼎銘。2004。觸犯多款法條之賭博與竊盜案件的法院文書的分類與分析。碩士論文。國立政治大學,台北市,台灣。
    [6] 何君豪。2006。階層式分群法在民事裁判要旨分群上之應用。碩士論文。國立政治大學,台北市,台灣。
    [7] 鄭人豪。2006。中文詞彙集的來源與權重對中文裁判書分類成效的影響。碩士論文。國立政治大學,台北市,台灣。
    [8] 林琬真。2012。機器學習於中文法律文件之標記與分類。碩士論文。國立臺灣大學,台北市,台灣。
    [9] 黃玉婷。2012。以文字探勘技術產製求量刑因子之研究—以我國智慧財產權法律為中心探討。碩士論文。東吳大學,台北市,台灣。
    [10]Stephen Cole Kleene. 1956. Representation of events in nerve nets and finite automata. Automata Studies. Princeton University Press, Princeton, New Jersey, 3-42.
    [11]林筱瓴。2013。文字探勘在判決書上之應用—以著作權法民事賠償為中心。碩士論文。國立臺灣大學,台北市,台灣。
    [12]陳政瑜。2015。基於文字探勘技術探討司法裁判書之撰寫一致性:以刑事訴訟停止羈押聲請裁定書為例。碩士論文。國立臺灣大學,台北市,台灣。
    [13]黃詩淳及邵軒磊。2017。運用機器學習預測法院裁判─法資訊學之實踐。月旦法學雜誌,第 270 期,86-96。DOI: http://doi.org/10.3966/102559312017110270006
    [14]黃詩淳及邵軒磊。2018。酌定子女親權之重要因素:以決策樹方法分析相關裁判。臺大法學論叢,第 47 卷,第 1 期,299-344。
    [15]Dou Shen, Jian-Tao Sun, Hua Li, Qiang Yang, and Zheng Chen. 2007. Document summarization using conditional random fields. In Proceedings of the 20th International Joint Conference on Artificial Intelligence (IJCAI`07), Rajeev Sangal, Harish Mehta, and R. K. Bagga (Eds.). Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2862-2867.
    [16]Kam-Fai Wong, Mingli Wu, and Wenjie Li. 2008. Extractive summarization using supervised and semi-supervised learning. In Proceedings of the 22nd International Conference on Computational Linguistics - Volume 1 (COLING `08), Vol. 1. Association for Computational Linguistics, Stroudsburg, PA, USA, 985-992.
    [17]Jianpeng Cheng and Mirella Lapata. 2016. Neural summarization by extracting sentences and words. In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Berlin, Germany, 484-494.
    [18]Yann LeCun, Léon Bottou, Yoshua Bengio and Patrick Haffner. 1998. Gradient-based learning applied to document recognition. Proceedings of the IEEE 86, 11 (1998), 2278–2324. DOI:http://dx.doi.org/10.1109/5.726791
    [19]John J. Hopfield. 1988. Neural networks and physical systems with emergent collective computational abilities. In Neurocomputing: foundations of research, James A. Anderson and Edward Rosenfeld (Eds.). MIT Press, Cambridge, MA, USA, 457-464.
    [20]Wei-Yun Ma and Keh-Jiann Chen. 2003. Introduction to CKIP Chinese word segmentation system for the first international Chinese Word Segmentation Bakeoff. In Proceedings of the Second SIGHAN Workshop on Chinese Language Processing - Volume 17 (SIGHAN `03), Vol. 17. Association for Computational Linguistics, Stroudsburg, PA, USA, 168-171.
    [21]Jeffrey D. Ullman, Alfred V Aho, and Daniel S Hirschberg. 1976. Bounds on the complexity of the longest common subsequence problem. Journal of the ACM 23, 1 (January 1976), 1-12. DOI=http://dx.doi.org/10.1145/321921.321922
    [22]Lee R. Dice. 1945. Measures of the amount of ecologic association between species. Ecology 26, 3 (1945), 297–302. DOI: http://dx.doi.org/10.2307/1932409
    [23]David Harris and Sarah Harris. 2012. Digital design and computer architecture (2nd. ed.). Morgan Kaufmann, San Francisco, CA, USA, 129.
    [24]Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian Janvin. 2003. A neural probabilistic language model. Journal of Machine Learning Research, 3 (March 2003), 1137-1155.
    [25]Tomas Mikolov, Kai Chen, Greg Corrado and Jeffrey Dean. 2013. Efficient estimation of word representations in vector space. arXiv:1301.3781. Retrieved from https://arxiv.org/abs/1301.3781
    [26]Piotr Bojanowski, Edouard Grave, Armand Joulin and Tomas Mikolov. 2016. Enriching word vectors with subword information. arXiv:1607.04606. Retrieved from https://arxiv.org/abs/1607.04606
    [27]Radim Rehurek and Petr Sojka. 2010. Software framework for topic modelling with large corpora. In Proceedings of the LREC 2010 Workshop on New Challenges for NLP Frameworks, European Language Resources Association, Valletta, Malta, 45-50.
    [28]Ronan Collobert, Jason Weston, Léon Bottou, Michael Karlen, Koray Kavukcuoglu, and Pavel Kuksa. 2011. Natural language processing (almost) from scratch. Journal of Machine Learning Research, 12 (November 2011), 2493-2537.
    [29]Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-term memory. Neural Computation 9, 8 (November 1997), 1735-1780. DOI: http://dx.doi.org/10.1162/neco.1997.9.8.1735
    [30]Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma, Qiwei Ye, and Tie-Yan Liu. 2017. LightGBM: A highly efficient gradient boosting decision tree. In Advances in Neural Information Processing Systems 30 (NIPS 2017). 3149-3157.
    [31]Ethem Alpaydin. 2010. Introduction to Machine Learning (2nd ed.). The MIT Press. 220-223.
    [32]Diederik P. Kingma, Jimmy Ba. 2016. Adam: A method for stochastic optimization. arXiv:1412.6980. Retrieved from https://arxiv.org/abs/1412.6980
    [33]Mike Schuster and Kuldip K. Paliwal. 1997. Bidirectional recurrent neural networks. IEEE Transactions on Signal Processing, 45(11), 2673-2681.
    [34]Tin Kam Ho. 1995. Random decision forests. In Proceedings of the Third International Conference on Document Analysis and Recognition (ICDAR `95), Vol. 1. IEEE Computer Society, Washington, DC, USA, 278-282.
    描述: 碩士
    國立政治大學
    資訊科學系
    105753014
    資料來源: http://thesis.lib.nccu.edu.tw/record/#G0105753014
    資料類型: thesis
    DOI: 10.6814/THE.NCCU.CS.003.2018.B02
    顯示於類別:[資訊科學系] 學位論文

    文件中的檔案:

    檔案 大小格式瀏覽次數
    301401.pdf2175KbAdobe PDF2186檢視/開啟


    在政大典藏中所有的資料項目都受到原著作權保護.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋