English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 114105/145137 (79%)
Visitors : 52181143      Online Users : 268
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/118873


    Title: Predicting the failures of prediction markets: A procedure of decision making using classification models
    Authors: Tai, Chung-Ching
    Lin, Hung-Wen
    Chie, Bin-Tzong
    童振源
    Chen-YuanTung
    Contributors: 國家發展研究所
    Keywords: Combining forecasts;Support vector machine;Decision trees;Principal component analysis;Discriminant analysis;Imbalanced data;Oversampling;SMOTE
    Date: 2018-06
    Issue Date: 2018-07-24 17:27:37 (UTC+8)
    Abstract: Prediction markets have been an important source of information for decision makers due to their high ex post accuracies. Nevertheless, recent failures of prediction markets remind us of the importance of ex ante assessments of their prediction accuracy. This paper proposes a systematic procedure for decision makers to acquire prediction models which may be used to predict the correctness of winner-take-all markets. We commence with a set of classification models and generate combined models following various rules. We also create artificial records in the training datasets to overcome the imbalanced data issue in classification problems. These models are then empirically trained and tested with a large dataset to see which may best be used to predict the failures of prediction markets. We find that no model can universally outperform others in terms of different performance measures. Despite this, we clearly demonstrate a result of capable models for decision makers based on different decision goals.
    Relation: International Journal of Forecasting
    Data Type: article
    DOI 連結: https://doi.org/10.1016/j.ijforecast.2018.04.003
    DOI: 10.1016/j.ijforecast.2018.04.003
    Appears in Collections:[國家發展研究所] 期刊論文

    Files in This Item:

    File Description SizeFormat
    04003.pdf832KbAdobe PDF2712View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback