English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113656/144643 (79%)
Visitors : 51740074      Online Users : 566
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 理學院 > 應用數學系 > 學位論文 >  Item 140.119/118828
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/118828


    Title: 一個組合等式的對射證明
    A Bijective Proof of a Combinatorial Identity
    Authors: 黃永昌
    Huang, Young-Chang
    Contributors: 李陽明
    Chen, Yong-Ming
    黃永昌
    Huang, Young-Chang
    Keywords: 對射
    組合等式
    Date: 2018
    Issue Date: 2018-07-24 11:00:52 (UTC+8)
    Abstract:   研究組合數學的目的不僅是算出答案,而是要理解算出答案的過程。在本篇論文中,本研究嘗試用組合的方法證明以下等式:
    C(r,n)*(n-r)*C(r,(n+r-1))=n*C(2r,(n+r-1))*C(r,2r)

      在解這個組合等式的時候,我們不使用一般的展開計算方式,而是先建構兩個集合,其個數分別為 C(r,n)*(n-r)*C(r,(n+r-1)) 以及 n*C(2r,(n+r-1))*C(r,2r) ,並在兩個集合之間建構一個函數。此函數的特點是一對一且映成,也就是說此函數為對射函數(bijective function),利用這個方法即可完成本篇的證明。
      The purpose of studying combinatory mathematics is not only to calculate the answer, but to understand the process of calculating the answer. In this paper, this study attempts to use the combined method to prove the following equation:

    C(r,n)*(n-r)*C(r,(n+r-1))=n*C(2r,(n+r-1))*C(r,2r)

      To solve this combination equation, instead of using the general expansion calculation method, two sets are constructed whose numbers of elements are, respectively,C(r,n)*(n-r)*C(r,(n+r-1)) and n*C(2r,(n+r-1))*C(r,2r), then a function are constructed between two sets. This function is characterized by a one to one and onto, that is to say this function is a bijective function. We can use this method to complete the proof of this article.
    Reference: [1] Alan Tucker, Applied Combinatorics,sixth edition, John Wiley & Sons,Inc.,p.233,2012.
    [2] 劉麗珍,一個組合等式的一對一證明,政治大學應用數學碩士論文,1994。
    [3] 陳建霖,一個組合等式的證明,政治大學應用數學碩士論文,1996。
    [4] 韓淑惠,開票一路領先的對射證明,政治大學應用數學碩士論文,2011。
    [5] 薛麗姿,一個珠狀排列的公式,政治大學應用數學碩士論文,2013。
    Description: 碩士
    國立政治大學
    應用數學系
    104751004
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0104751004
    Data Type: thesis
    DOI: 10.6814/THE.NCCU.MATH.001.2018.B01
    Appears in Collections:[應用數學系] 學位論文

    Files in This Item:

    File SizeFormat
    100401.pdf513KbAdobe PDF24View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback