政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/118808
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  全文笔数/总笔数 : 114401/145431 (79%)
造访人次 : 53083207      在线人数 : 593
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻
    政大機構典藏 > 理學院 > 心理學系 > 學位論文 >  Item 140.119/118808


    请使用永久网址来引用或连结此文件: https://nccur.lib.nccu.edu.tw/handle/140.119/118808


    题名: 以磁振照影探討睡眠脆弱特質之神經生理基礎
    The neurophysiological basis of stress-related sleep vulnerability : a fMRI study
    作者: 陳怜均
    Chen, Ling-Chun
    贡献者: 楊建銘
    陳怜均
    Chen, Ling-Chun
    关键词: 睡眠脆弱特質
    過度激發
    磁振照影
    EEG腦波頻譜分析
    Stress-related sleep vulnerability
    Hyperarousal
    fMRI
    EEG power spectrum analysis
    日期: 2018
    上传时间: 2018-07-23 16:51:23 (UTC+8)
    摘要: 研究目的 Spielman (1986) 將失眠依病程時間軸區分成前置因子、促發因子與維持因子,而目前研究支持睡眠脆弱特質為一個重要的失眠前置因子,此特質較高者,較易在壓力下產生自主神經系統過度激發的現象,並出現短暫性失眠。但過去並未探討此特質之中樞神經生理機制,藉由多方了解此因子的神經生理機制,可幫助釐清失眠病程之前置因子的神經生理機制。因此,本研究以fMRI在靜息態及睡眠起始點前、後五分鐘進行測量,分析可反應各區神經元自發活動高低的低頻振幅值 (amplitude of low frequency fluctuations, ALFF),及與認知、記憶及情緒相關腦區的功能性連結,並以EEG在睡眠起始點前、後五分鐘進行測量,分析其相對功率值,以此作為中樞神經系統激發程度指標,藉以探討睡眠脆弱特質之中樞神經生理相關機制。此研究假設高睡眠脆弱特質者在壓力下會出現較長的入睡耗時、較高的高頻腦波,且與過度激發相關腦區的ALFF值會較高,同時與認知、記憶及情緒相關腦區的功能性連結變化會與失眠者相似。
    研究方法 本研究以福特壓力下失眠反應量表 (Ford Insomnia Response to Stress Test, FIRST) 區分出高睡眠脆弱特質組 (high FIRST; HF) 18位及低睡眠脆弱特質組 (low FIRST; LF) 10位。在正式實驗前一晚會要求受試者進行2至3小時的睡眠剝奪,並於實驗當天不得補眠,於實驗當晚進行fMRI及EEG量測,在靜息態量測後,請受試者在磁振照影儀中嘗試入睡。結果分析部分,在功能性連結部份以杏仁核 (Amygdala) 、預設模式網絡 (Default Mode Network)、額頂葉網絡 (Frontoparietal Network) 及海馬迴 (Hippocampus) 為主,EEG部份,則以腦波頻譜分析為主,用以比較高、低頻腦波之相對功率。
    研究結果 在EEG部分,以2 (組別) x2 (時間) 之混合設計二因子變異數分析比較兩組在睡眠起始點前、後五分鐘的腦波功率值是否有差異。結果顯示低睡眠脆弱特質組的入睡時距顯著高於高睡眠脆弱特質組,在睡後的低頻腦波,包括Delta及Theta波都顯著比睡前高,而睡後的高頻腦波,包括Alpha及Beta波都顯著比睡前低。相較於低睡眠脆弱特質組,高睡眠脆弱特質組在睡後的Theta波顯著較高。另外在fMRI的結果中,不管在靜息態或是睡眠起始點前、後五分鐘,於腦區的活化程度及各腦區間的功能性連結則無顯著差異。
    結論 本研究探討睡眠脆弱特質之中樞神經生理相關機制,結果並不支持研究假設,在高頻腦波 (Alpha及Beta波) 以及fMRI的結果上無顯著差異,反而在EEG分析發現高睡眠脆弱特質者,在入睡歷程中有較高的Theta波及較短的入睡時距。綜合過去文獻及此研究結果可推論,睡眠脆弱特質相關的過度激發可能來自於自主神經系統過度活躍,並非中樞神經系統,而中樞神經系統的過度活躍可能是在失眠慢性化過程中逐漸發展而成。

    關鍵字:睡眠脆弱特質、過度激發、磁振照影、EEG腦波頻譜分析
    Introduction: According to the 3P model proposed by Spielman (1986), the contributing factors for the development of chronic insomnia can be categorized into three categories: predisposing factors, precipitating factors, and perpetuating factors. Previous research indicates that stress-related sleep vulnerability is an important predisposing factor and have shown that individuals with high stress-related sleep vulnerability (HF) demonstrated hyperarousal of the autonomic nervous system as seen in patients with chronic insomnia. However, it is not clear whether they also have hyperaroused central nervous system as chronic insomnia patients do. Therefore, this study aims to examine the association between the stress-related sleep vulnerability and neurophysiological arousal by conducting fMRI and EEG recordings simultaneously with the following measures: (1) fMRI of the resting state, (2) fMRI during the first five minutes before and after the onset of sleep, (3) the amplitude of low frequency fluctuations (ALFF) in fMRI, (4) the functional connectivity of fMRI in cognitive-, memory-, and emotion-related regions, and (5) EEG during the five minutes before and after the onset of sleep. It is hypothesized that HF would have a longer sleep onset latency under the stress from sleeping in a MRI scanner, greater high-frequency EEG activity, and greater ALFF in arousal-related regions. We further predicted that HF will show a pattern in functional connectivity in cognitive-, memory-, and mood-related brain regions similar to chronic insomnia patients.
    Method: Ten healthy individuals scoring low (LF) and eighteen healthy individuals scoring high (HF) on the Ford Insomnia Response to Stress Test (FIRST) were chosen as subjects for the study. On the night before the experiment, the subjects were asked to deprive themselves of 2 to 3 hours of sleep, and on the day of the experiment, they were not allowed to take a nap. After the resting state recording was taken, the fMRI and EEG recording was conducted simultaneously while the participants were trying to fall asleep in an MRI scanner. For the MRI data, the functional connectivities based on Amygdala, Default Mode Network, Frontoparial Network, and Hippocampus networks were analyzed; whereas for the EEG data, spectrum analysis is used to compare the relative power of different frequency bands.
    Result: For the EEG data, 2 (group) x2 (time) two-way ANOVAs with mixed design, were performed to compare the power of the two groups for different frequency bands. Low frequency EEG activities, including Delta and Theta waves, were significantly higher after sleep onset than before sleep onset, whereas high frequency EEG activity, including Alpha and Beta waves, are significantly lower after sleep onset than before sleep onset regardless of the groups. HF had significantly higher theta waves than LF after sleep onset, but there was no significant difference in the high frequency EEG activity between the two groups. The fMRI revealed no significant difference in the degree of activation in the brain regions and functional connectivities in resting state, before sleep onset, or after sleep onset. In addition, LF, unexpectedly, exhibited significantly higher sleep onset latency than HF did.
    Conclusion: This study compared the neurophysiological activation of the central nervous system between individuals with high and low stress-related sleep vulnerability. The results do not support our hypotheses, as there was no significant difference in high frequency EEG activity (alpha and beta wave), ALFF, or functional connectivity between HF and LF. In contrast, HF group was shown to have higher theta power and a shorter sleep onset latency. Based on the findings from previous studies and the results of the present study, it suggests that the stress-related sleep vulnerability may be more associated with hyper-activation of the autonomic nervous system rather than the central nervous system. The hyperarousal of the central nervous system as a feature of patients with chronic insomnia may be developed as the insomnia becoming more chronic in course.

    Keyword: stress-related sleep vulnerability, hyperarousal, fMRI, EEG power spectrum analysis
    參考文獻: 林一真(民89)。貝克焦慮量表(BAI)中文版。台北:中國行為
    科學社。
    林詩淳 (民97)。慢性失眠者與情境性失眠高危險族群之壓力因應與
    失眠的關係。國立政治大學心理所碩士論文,未出版,台北
    市。
    車先蕙、盧孟良、陳錫中、張尚文、李宇宙(民95)。中文版貝克
    焦慮量表之信效度。台灣醫學,10(4),447-454。
    陳心怡 (民89)。貝克憂鬱量表第二版 (BDI-II) 中文版。 台北: 中國
    行為科學社。
    American Psychiatric Association, A. P. (2013). Diagnostic and
    Statistical Manual of Mental Disorder, 4th edn. Washinton,
    DC: American Psychiatriy Association.
    Agnew, H. W., Webb, W. B., & Williams, R. L. (1966).
    Psychophysiology, 2, 263-266.
    Altena, E., Van Der Werf, Y. D., Sanz-Arigita, E. J., Voorn, T. A.,
    Rombouts, S. A., Kuijer, J. P. (2008). Prefrontal
    hypoactivation and recovery in insomnia. Sleep, 31(9),
    1271–1276.
    Borkovec, T. D. (1982). Insomnia. Journal of Consulting and
    Clinical Psychology, 50, 880-895.
    Buckner, R. L., Andrew-Hanna, J. R., & Schacter, D. L. (2005).
    The brain’s default network : anatomy, function, and
    relevance to disease. Annals of the New York Academy of
    Sciences, 1124, 1-38.
    Buysse, D. J., Reynolds, C. F., Monk, T. H., Berman, S. R., &
    Kupfer, D. J. (1989). Pittsburgh Sleep Quality Index: A new
    instrument for psychiatric practice and research. Psychiatry
    Research, 28, 193-213.
    Chen, I. Y., Jarrin, D. C., Ivers, H., & Morin, C. M. (2017)
    Investigating psychological and physiological responses to
    the trier social stress test in young adault with insomnia.
    Sleep medicine, 40, 11-22.
    Drake, C. L., Cheng, P., Almeida, D. M., & Roth, T.(2017).
    Familial risk for insomnia is associated with abnormal
    cortisol response to stress. Sleep, 40.
    Drake, C. L., Jefferson, C., Roehrs, T., & Roth, T.(2006). Stress-
    related sleep disturbance and polysomnographic response
    to caffeine. Sleep Medicine, 7(7), 567–572.
    Drake, C. L., Roehrs, T., & Roth, T.(2003). Insomnia Causes,
    Consequences, and Therapeutics: An Overview. Depression
    and Anxiety, 18, 163–176.
    Drake, C., Richardson, G., Roehrs, T., Scofield, H., & Roth, T.,
    (2004).Vulnerability to Stress-related Sleep Disturbance and
    Hyperarousal. Sleep, 27, 285-291.
    Drake, C. L., Scofield, H., & Roth, T. (2008). Vulnerability to
    insomnia: the role offamilial aggregation. Sleep Medicine,
    9(3), 297-302.
    Drummond, S. P., Walker, M., Almklov, E., Campos, M.,
    Anderson, D. E., & Straus, L. D. (2013) Neural correlates of
    working memory performance in primary insomnia. Sleep,
    36(9), 1307–16.
    Edinger, J. D., Carney, C. E., & Wohlgemuth, W. K. (2008).
    Pretherapy cognitivedispositions and treatment outcome in
    cognitive behavior therapy for insomnia.insomnia. Behavior
    Therapy, 39(4), 406-416.
    Finelli, L. A., Baumann, H., Borbely, A. A., & Achermann, P.
    (2000). Dual electroencephalogram markers of human sleep
    homeostasis: correlation between theta activity in waking
    and slow-wave activity in sleep. Neuroscience, 101(3),
    523-529.
    Fernandez-Mendoza, J., Vela-Bueno, A., Vgontzas, A. N.,
    Ramos-Platon, M. J., Olavarrieta-Bernardino, S., Bixler, E. O.,
    et al. (2010). Cognitive-emotional hyperarousal as a
    premorbid characteristic of individuals vulnerable to
    insomnia. Psychosomatic Medicine, 72(4), 397-403.
    Hauri, P. J. (1983). A cluster analysis of insomnia. Sleep, 6(4),
    326-338.
    Hauri, P. J., Olmstead, E. M. (1989). Reverse first night effect in
    insomnia. Sleep, 12(2), 97-105.
    Hwang, Z., Liang, P., Jia, X., Zhan, S., Li, N., Ding, Y., Lu, J.,
    Wang, Y., & Li, K. (2012). Abnormal amygdala connectivity in
    patients with primary insomnia: Evidence from resting state
    fMRI. European Journal of Radiology, 81, 1288– 1295.
    Jarrin, D. C., Chen, I. Y., Ivers, H., & Morin, C. M.,(2014) The role
    of vulnerability in stress-related insomnia, social support and
    coping styles on incidence and persistence of insomnia.
    European Sleep Research Society, 23, 681–688.
    Kao, C. C., Huang, C. J., Wang, M. Y., & Tsai, P. S. (2008).
    Insomnia: Prevalence and its impact on excessive daytime
    sleepiness and psychological well-being in the adult
    Taiwanese population. Quality of Life Research, 17(8),
    1073-1080.
    Kalmbach, D., Pillai, V., Arnedt, T., & Drake, C. (2016).
    Identifying at-risk individuals for insomnia using the Ford
    Insomnia Response to Stress Test. Sleep, 39(2), 449-456.
    Lundh, L., & Broman, J. (2000). Insomnia as an interaction
    between sleep-interfering and sleep-interpreting processes.
    Journal of Psychosomatic Research, 49, 299-310.
    Lin, Y. H., Jen, C. H., & Yang, C. M. (2015). Information
    processing during sleep and stress-related sleep
    vulnerability. Psychiatry and clinical neurosciences, 69,
    84-92.
    Li, Wang, Zhang, Dou, Liu, Tong, Lei, Wang, Xu, Shi, & Zhang.
    (2014). Functional connectivity changes between parietal
    and prefrontal cortices in primary insomnia patients:
    evidence from resting-state fMRI. European Journal of
    Medical Research, 19:32. http://www.eurjmedres.com/
    content/19/1/32
    Larson-Prior, L. J., Zempel, J. M., Nolan, T. S., Prior, F. W.,
    Snyder, A. Z., & Raichle, M. E. (2009). Cortical network
    functional connectivity in the descent to sleep. Proceedings
    of the National Academy of Sciences of the United States of
    America, 106, 4489–4494.
    Morin, Belanger, LeBlanc, Ivers, Savard, Espie, Merette,
    Baillargeon, & Gregoire. (2009). The Natural History of
    Insomnia : A Population-Based 3-year Longitudinal Study.
    Archives of Internal Medicine, 169(5), 447-453.
    Nofzinger, E. A., Buysse, D. J., Germain, A., Price, J. C.,
    Miewald, J. M., & Kupfer, D. J. (2004) Functional
    neuroimaging evidence for hyperarousal in insomnia. The
    American Journal of Psychiatry, 161(11), 2126–2128.
    Noh, H. J., Joo, E. Y., Kim, S. T., Yoon, S. M., Koo, D. L., & Kim,
    D. (2012) The relationship between hippocampal volume and
    cognition in patients with chronic primary insom- nia. Journal
    Clinical Neurology, 8(2), 130–138.
    Neckelmann, D., Mykletun, A., & Dahl, A. A. (2007). Chronic
    insomnia as a risk factor for developing anxiety and
    depression. Sleep, 30(7), 873-880.
    Nofzinger, E. A., Nissen, C., Germain, A., Moul, D., Hall, M.,
    Price, J. C., Miewald, J. M., & Buysse, D. J. (2006) Regional
    cerebral metabolic correlates of WASO during NREM sleep in
    insomnia. Journal of Clinical Sleep Medicine, 2(3), 316–322.
    Ohayon, M. M. (2002) Epidemiology of insomnia: what we know
    and what we still need to learn. Sleep Medicine Reviews,
    6(2), 97-111.
    O’Byrne, J. N., Berman rosa, M., Gouin, J. P., & Dang-Vu, T. T.
    (2014). Neuroimaging findings in primary insomnia.
    Pathologie Biologie, 62, 262–269.
    Perlis, M. L., Giles, D. E., Mendelson, W. B., Bootzin, R. R., &
    Wyatt, J. K. (1997). Psychophysiological insomnia: the
    behavioural model and a neurocognitive perspective. Journal
    of Sleep Research, 6(3), 179-188.
    Perlis, M. L., Kehr, E. L., Smith, M. T., Andrews, P. J., Orff, H., &
    Giles, D. E. (2001). Temporal and stagewise distribution of
    high frequency EEG activity in patients with primary and
    secondary insomnia and in good sleeper controls. Journal of
    Sleep Research, 10(2), 93-104.
    Spielman, A. J. (1986). Assessment of insomnia. Clinical
    Psychology Review, 6, 11-25.
    Saper, C. B., Chou, T. C. & Scammell, T. E. (2001) The sleep
    switch: hypothalamic control of sleep and wakefulness.
    Trends Neurosci. 24, 726-731.
    Smith, M. T., Perlis, M. L., Chengazi, V. U., Soeffing, J., &
    McCann, U. (2005). NREM sleep cerebral blood flow before
    and after behavior therapy for chronic primary insomnia:
    Preliminary single photon emission computed tomography
    (SPECT) data [3]. Sleep Medicine, 6(1), 93-94.
    Sheehan, D. V., Lecrubier, Y., Sheehan, K. H., Amorim, P.,
    Janavs, J., Weiller, E., & Dunbar, G. C. (1998). The Mini
    International Neuropsychiatric Interview (M.I.N.I.): the
    development and validation of a structured diagnostic
    psychiatric interview for DSM-IV and ICD-10. Journal of
    Clinical Psychiatry, 59 Suppl 20, 22-33;quiz 34-57.
    Sharpley, A. L., Solomon, R. A., & Cowen, P. J. (1988).
    Evaluation of first night effect using ambulatory monitoring
    and automatic sleep stage analysis. Sleep, 11(3), 273-276.
    Saper, C. B., Scammell, E. T., & Lu, J. (2005). Hypothalamic
    regulation of sleep and circadian rhythms. Nature, 437,
    1257-1263.
    Spielman, A. J., Saskin, P., & Thorpy, M. J. (1987) Treatment of
    chronic insomnia by restriction of time in bed. Sleep, 10,
    45-56.
    Sämann, P. G., Wehrle, R., Hoehn, D., Spoormaker, V. I., Peters,
    H., Tully, C., Holsboer, F., & Czisch, M. (2011). Development
    of the brain`s default mode network from wakefulness to
    slow wave sleep. Cerebral Cortex, 21(9), 2082-2093.
    Turcotte, I., & Bastien, C. H. (2009). Is quality of sleep related
    to the N1 and P2 ERPs in chronic psychophysiological
    insomnia sufferers? International Journal of
    Psychophysiology, 72, 314-322.
    Toussaint, M., Luthringer, Remy., Schaltenbrand, Nicolas.,
    Carelli, G., Lainey, E., Jacqmin, A., Muzet, A., & Mcher, J.
    (1995). Sleep, 18(6), 463-469.
    Thomsen, D. K., Mehlsen, M. Y., Christensen, S., & Zachariae,
    R. (2003). Rumination-relationship with negative mood and
    sleep quality. Personality and Individual Differences, 34,
    1293-1301.
    Von Economo, C. (1930). Sleep as a problem of localization.
    The Journal of Nervous and Mental Disease, 71, 249-259.
    Vgontzas, A. N., Tsigos, C., Bixler, E. O., et al. (1998). Chronic
    insomnia and activity of the stress system: a preliminary
    study. Journal of Psychosom Research, 45(1), 21–31.
    Winkelman, J. W., Benson, K. L., Buxton, O. M., Lyoo, I. K., Yoon,
    S., & O’Connor, S. (2010). Lack of hippocampal volume
    differences in primary insomnia and good sleeper controls:
    an MRI volumetric study at 3 Tesla. Sleep Medicine, 11(6),
    576–582.
    Winkelman, J. W., Plante, D. T., Schoerning, L., Benson, K.,
    Buxton, O. M., & O’Connor, S. P. (2013). Increased rostral
    anterior cingulate cortex volume in chronic primary insomnia.
    Sleep, 36(7), 991–998.
    Yang, C. M., Hung, C. Y., & Lee, H. C. (2014). Stress-Related
    Sleep Vulnerability and Maladaptive Sleep Beliefs Predict
    Insomnia at Long-Term Follow-Up. Journal of Clinical Sleep
    Medicine, 10(9), 997-1001.
    Yang, C. M., Lin, S. C., & Cheng, C. P. (2013). Transient
    Insomnia Versus ChronicInsomnia: A Comparison oStudy of
    Sleep-Related Psychological/ Behavioral Characteristics.
    Journal of Clinical Psychology. 69(10), 1094-1107.
    Zoccola, M., Dickerson, S., & Lam, S. (2009). Rumination
    Predicts Longer Sleep Onset Latency After an Acute
    Psychosocial Stressor. Psychosomatic Medicine, 71, 771-775.
    描述: 碩士
    國立政治大學
    心理學系
    103752006
    資料來源: http://thesis.lib.nccu.edu.tw/record/#G0103752006
    数据类型: thesis
    DOI: 10.6814/THE.NCCU.PSY.008.2018.C01
    显示于类别:[心理學系] 學位論文

    文件中的档案:

    档案 大小格式浏览次数
    200601.pdf2151KbAdobe PDF216检视/开启


    在政大典藏中所有的数据项都受到原著作权保护.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈