政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/118784
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  全文筆數/總筆數 : 114205/145239 (79%)
造訪人次 : 52619196      線上人數 : 597
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    政大機構典藏 > 理學院 > 心理學系 > 學位論文 >  Item 140.119/118784
    請使用永久網址來引用或連結此文件: https://nccur.lib.nccu.edu.tw/handle/140.119/118784


    題名: 預測的心理機制
    The psychological mechanism of forecasting
    作者: 李孜希
    Lee, Tzu Hsi
    貢獻者: 楊立行
    李孜希
    Lee, Tzu Hsi
    關鍵詞: 函式學習
    預測
    日期: 2018
    上傳時間: 2018-07-20 18:01:33 (UTC+8)
    摘要: 先前與預測(Forecasting)相關的研究雖多,卻多在企管、金融或經濟等領域,且對其心理機制無所著墨。在此研究中,我們提出了三種在預測中可能的心理表徵形式,分別是:以時間為獨變項的方程式、只參考變項前一刻數值的遞迴方程式,以及將所有曾出現過的變項數值作為獨變項的自迴歸方程式,試圖探討何者適合作為預測模型的心理表徵。本研究共招募了268位政大學生作為實驗參與者,透過三個在電腦上施測的行為實驗,我們逐一檢驗了這三種表徵的可能性,最終提出,預測函式的心理表徵應為遞迴方程式。在實驗一中,我們探討了預測作業的難易度與預測函式結構複雜度的關係,檢視其關聯性是否與函式學習作業中發現的現象一致,並指出預測作業的難易度可能與函式中所使用的參數個數無關,排除了以時間為獨變項的方程式作為預測心理表徵唯一的可能性。接下來,我們於實驗二探究了人們是否敏感於變項前後嘗試次之間的關聯性並藉此進行預測,發現一旦前後刺激之間的關聯性被破壞,人們在預測作業中的表現便大幅受到影響,表示前後嘗試次之間的關聯性是預測作業中的重要因素。最後,透過實驗三的設計,我們比較了兩個設計情境之間的差異,顯示人們在進行預測時主要是參考前一個刺激的數值,這讓我們得以確定預測的心理表徵形式為遞迴方程式。在重新檢視了預測和函式學習的異同之後,我們認為預測是函式學習的特例,是過去函式學習中未曾探究過的函式類型。
    參考文獻: Andreassen, P. B., & Kraus, S. J. (1990). Judgmental extrapolation and the salience of change. Journal of forecasting, 9(4), 347-372. doi:10.1002/for.3980090405
    Brehmer, B. (1974). Hypotheses about relations between scaled variables in the learning of probabilistic inference tasks. Organizational Behavior and Human Performance, 11(1), 1-27.
    Busemeyer, J. R., Byun, E., Delosh, E. L., & McDaniel, M. A. (1997). Learning functional relations based on experience with input-output pairs by humans and artificial neural networks. In K. Lamberts & D. Shanks (Eds.), Knowledge concepts and categories (pp. 405-437). Cambridge, MA: MIT Press.
    Busemeyer, J. R., Dewey, G. I., & Medin, D. L. (1984). Evaluation of exemplar-based generalization and the abstraction of categorical information. Journal of Experimental Psychology: Learning, Memory, and Cognition, 10(4), 638-648. doi:10.1037/0278-7393.10.4.638
    Carroll, J. D. (1963). Functional learning: The learning of continuous functional mappings relating stimulus and response continua. Princeton, NJ.
    DeLosh, E. L., Busemeyer, J. R., & McDaniel, M. A. (1997). Extrapolation: the sine qua non for abstraction in function learning. J Exp Psychol Learn Mem Cogn, 23(4), 968-986.
    Goodwin, P., & Wright, G. (1993). Improving judgmental time series forecasting: A review of the guidance provided by research. International Journal of Forecasting, 9(2), 147-161.
    Harvey, N. (1988). Judgmental forecasting of univariate time series. Journal of Behavioral Decision Making, 1(2), 95-110. doi:10.1002/bdm.3960010204
    Hogarth, R. M., & Makridakis, S. (1981). Forecasting and planning: An evaluation. Management Science, 27(2), 115-138.
    Kalish, M. L., Lewandowsky, S., & Kruschke, J. K. (2004). Population of linear experts: knowledge partitioning and function learning. Psychological review, 111(4), 1072-1099. doi:10.1037/0033-295X.111.4.1072
    Koh, K., & Meyer, D. E. (1991). Function learning: Induction of continuous stimulus-response relations. Journal of Experimental Psychology: Learning, Memory, and Cognition, 17(5), 811-836. doi:10.1037/0278-7393.17.5.811
    Kusev, P., van Schaik, P., Tsaneva‐Atanasova, K., Juliusson, A., & Chater, N. (2018). Adaptive Anchoring Model: How Static and Dynamic Presentations of Time Series Influence Judgments and Predictions. Cognitive science, 42(1), 77-102.
    Lawrence, M., Goodwin, P., O`Connor, M., & Önkal, D. (2006). Judgmental forecasting: A review of progress over the last 25 years. International Journal of Forecasting, 22(3), 493-518. doi:10.1016/j.ijforecast.2006.03.007
    Lawrence, M., & Makridakis, S. (1989). Factors affecting judgmental forecasts and confidence intervals. Organizational Behavior and Human Decision Processes, 43(2), 172-187.
    Peirce, J. W. (2007). PsychoPy—psychophysics software in Python. Journal of neuroscience methods, 162(1), 8-13.
    Roll, R. (1984). Orange juice and weather. The American Economic Review, 74(5), 861-880.
    Sniezek, J. A. (1986). The role of variable labels in cue probability learning tasks. Organizational Behavior and Human Decision Processes, 38(2), 141-161.
    Stewart, T. R., & Lusk, C. M. (1994). Seven components of judgmental forecasting skill: Implications for research and the improvement of forecasts. Journal of forecasting, 13(7), 579-599.
    描述: 碩士
    國立政治大學
    心理學系
    103752010
    資料來源: http://thesis.lib.nccu.edu.tw/record/#G1037520101
    資料類型: thesis
    DOI: 10.6814/THE.NCCU.PSY.006.2018.C01
    顯示於類別:[心理學系] 學位論文

    文件中的檔案:

    檔案 大小格式瀏覽次數
    010101.pdf2269KbAdobe PDF2223檢視/開啟


    在政大典藏中所有的資料項目都受到原著作權保護.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋