English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 114205/145239 (79%)
Visitors : 52586175      Online Users : 976
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 理學院 > 心理學系 > 學位論文 >  Item 140.119/118760
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/118760


    Title: 以部分XOR作業探討類別學習中XOR策略生成的原因
    How the XOR categorization strategy is generated when learning a partial XOR category structure
    Authors: 張育瑋
    Chang, Yu-Wei
    Contributors: 楊立行
    張育瑋
    Chang, Yu-Wei
    Keywords: XOR策略
    知識分化
    分類學習
    工作記憶
    Date: 2018
    Issue Date: 2018-07-19 17:27:34 (UTC+8)
    Abstract: Conaway與Kurtz(2015)提出部分XOR作業(partial-XOR task)的行為證據,顯示在沒有學習的情況下,仍有一部分參與者會捨棄接近性而使用XOR策略進行分類。這樣的結果並沒辦法用參考點模型解釋,但能被發散自編碼模型(divergent autoencoder model,簡稱DIVA;Kurtz, 2007)所解釋。然而,他們的研究並沒有說明,為什麼以及在何者情境下,人們會自主性地生成XOR策略。為此,本研究提出兩個假設,分別是對立捷思(contrast heuristic)與知識分化(knowledge partitioning)作為說明。實驗一先重製(replicate)了Conaway與Kurtz的結果。實驗二藉由破壞原先類別結構的對稱性,以期減少自主性XOR策略之生成,然而這個假設並沒有得到支持,顯示對立捷思不是人們自主性使用XOR策略的原因。實驗三則操弄刺激向度在不同類別內的相關程度,使得一個類別內兩刺激向度有高相關;但另一個類別內則相關為零。若如DIVA所示,自主性XOR策略的生成與類別內刺激向度之間的相關有關,我們應預期實驗三中觀察到的自主性XOR策略生成的比例下降。若如知識分化所示,人們只是將部分XOR的結構切分成不同區域,再以不同規則進行分類,則XOR策略應仍會出現,不受刺激向度之間的相關程度影響,結果發現不但沒有下降還反而增加,支持知識分化的說法。同時,這兩個實驗也都發現XOR策略的生成與工作記憶廣度無關,進一步突顯知識分化與XOR策略之間的關聯性。由於採用知識分化策略必須要能夠分別注意不同的刺激向度,實驗四以心理不可分割的刺激向度進行實驗,果然沒有發現任何自主性XOR策略的生成。綜合四個實驗,本研究結論,使用部分XOR類別結構所誘發的自主性XOR分類策略其實是由於實驗參與者使用了知識分化的緣故。
    Reference: 俞信安(民96)。分類研究中的自發性知識分化現象(未出版之碩士論文)。國立中正大學,嘉義市。
    Abdi, H., Valentin, D., & Edelman, B. (1999). Neural Networks (Quantitative Applications in the Social Sciences).
    Aha, D. W., & Goldstone, R. L. (1992). Concept learning and flexible weighting. Paper presented at the Proceedings of the fourteenth annual conference of the Cognitive Science Society.
    Ashby, F. G., Alfonso-Reese, L. A., & Waldron, E. M. (1998). A neuropsychological theory of multiple systems in category learning. Psychological review, 105(3), 442.
    Ashby, F. G., & Gott, R. E. (1988). Decision rules in the perception and categorization of multidimensional stimuli. Journal of Experimental Psychology: Learning, Memory, and Cognition, 14(1), 33.
    Ashby, F. G., & Maddox, W. T. (1990). Integrating information from separable psychological dimensions. Journal of Experimental Psychology: Human Perception and Performance, 16(3), 598.
    Ashby, F. G., & Maddox, W. T. (2005). Human category learning. Annu. Rev. Psychol., 56, 149-178.
    Ashby, F. G., Paul, E. J., & Maddox, W. T. (2011). 4 COVIS. Formal approaches in categorization, 65.
    Ashby, F. G., & Townsend, J. T. (1986). Varieties of perceptual independence. Psychological review, 93(2), 154.
    Brainard, D. H., & Vision, S. (1997). The psychophysics toolbox. Spatial vision, 10, 433-436.
    Conaway, N., & Kurtz, K. J. (2015). A Dissociation between Categorization and Similarity to Exemplars. Paper presented at the CogSci.
    Conaway, N., & Kurtz, K. J. (2017). Similar to the category, but not the exemplars: A study of generalization. Psychonomic Bulletin & Review, 24(4), 1312-1323.
    Craig, S., & Lewandowsky, S. (2012). Whichever way you choose to categorize, working memory helps you learn. Quarterly Journal of Experimental Psychology, 65(3), 439-464.
    DeCaro, M. S., Carlson, K. D., Thomas, R. D., & Beilock, S. L. (2009). When and how less is more: Reply to Tharp and Pickering. Cognition, 111(3), 415-421.
    DeCaro, M. S., Thomas, R. D., & Beilock, S. L. (2008). Individual differences in category learning: Sometimes less working memory capacity is better than more. Cognition, 107(1), 284-294.
    Donkin, C., Newell, B. R., Kalish, M., Dunn, J. C., & Nosofsky, R. M. (2015). Identifying strategy use in category learning tasks: A case for more diagnostic data and models. Journal of Experimental Psychology: Learning, Memory, and Cognition, 41(4), 933.
    Edmunds, C., Milton, F., & Wills, A. J. (2015). Feedback can be superior to observational training for both rule-based and information-integration category structures. The Quarterly Journal of Experimental Psychology, 68(6), 1203-1222.
    Erickson, M. A., & Kruschke, J. K. (1998). Rules and exemplars in category learning. Journal of experimental psychology: General, 127(2), 107.
    Estes, W. K. (1994). Classification and cognition: Oxford University Press.
    Filoteo, J. V., Lauritzen, S., & Maddox, W. T. (2010). Removing the frontal lobes: The effects of engaging executive functions on perceptual category learning. Psychological Science, 21(3), 415-423.
    Fried, L. S., & Holyoak, K. J. (1984). Induction of category distributions: A framework for classification learning. Journal of Experimental Psychology: Learning, Memory, and Cognition, 10(2), 234.
    Garner, W. R. (2014). The processing of information and structure: Psychology Press.
    Garner, W. R., & Felfoldy, G. L. (1970). Integrality of stimulus dimensions in various types of information processing. Cognitive psychology, 1(3), 225-241.
    Gluck, M. A., & Bower, G. H. (1988). From conditioning to category learning: An adaptive network model. Journal of experimental psychology: General, 117(3), 227.
    Kalish, M. L., Lewandowsky, S., & Kruschke, J. K. (2004). Population of linear experts: knowledge partitioning and function learning. Psychological review, 111(4), 1072.
    Kruschke, J. K. (1992). ALCOVE: an exemplar-based connectionist model of category learning. Psychological review, 99(1), 22.
    Kruschke, J. K. (2011). Model of attentional learning. In E. M. Pothos & A. J. Wills (Eds.), Formal approaches in categorization
    Cambridge University Press.
    Kurtz, K. J. (2007). The divergent autoencoder (DIVA) model of category learning. Psychonomic Bulletin & Review, 14(4), 560-576.
    Levering, K. R., & Kurtz, K. J. (2015). Observation versus classification in supervised category learning. Memory & Cognition, 43(2), 266-282.
    Lewandowsky, S. (2011). Working memory capacity and categorization: individual differences and modeling. Journal of Experimental Psychology: Learning, Memory, and Cognition, 37(3), 720.
    Lewandowsky, S., Kalish, M., & Griffiths, T. L. (2000). Competing strategies in categorization: Expediency and resistance to knowledge restructuring. Journal of Experimental Psychology: Learning, Memory, and Cognition, 26(6), 1666.
    Lewandowsky, S., Kalish, M., & Ngang, S. (2002). Simplified learning in complex situations: Knowledge partitioning in function learning. Journal of experimental psychology: General, 131(2), 163.
    Lewandowsky, S., & Kirsner, K. (2000). Knowledge partitioning: Context-dependent use of expertise. Memory & Cognition, 28(2), 295-305.
    Lewandowsky, S., Oberauer, K., Yang, L.-X., & Ecker, U. K. (2010). A working memory test battery for MATLAB. Behavior Research Methods, 42(2), 571-585.
    Lewandowsky, S., Roberts, L., & Yang, L.-X. (2006). Knowledge partitioning in categorization: Boundary conditions. Memory & Cognition, 34(8), 1676-1688.
    Lewandowsky, S., Yang, L.-X., Newell, B. R., & Kalish, M. L. (2012). Working memory does not dissociate between different perceptual categorization tasks. Journal of Experimental Psychology: Learning, Memory, and Cognition, 38(4), 881.
    Maddox, W. T., & Ashby, F. G. (1993). Comparing decision bound and exemplar models of categorization. Perception & Psychophysics, 53(1), 49-70.
    Maddox, W. T., & Ashby, F. G. (2004). Dissociating explicit and procedural-learning based systems of perceptual category learning. Behavioural Processes, 66(3), 309-332.
    Maddox, W. T., & David, A. (2005). Delayed feedback disrupts the procedural-learning system but not the hypothesis-testing system in perceptual category learning. Journal of Experimental Psychology: Learning, Memory, and Cognition, 31(1), 100.
    Maddox, W. T., Love, B. C., Glass, B. D., & Filoteo, J. V. (2008). When more is less: Feedback effects in perceptual category learning. Cognition, 108(2), 578-589.
    Matsuka, T. (2004). Generalized exploratory model of human category learning. International Journal of Computational Intelligence, 1(1).
    Medin, D. L., & Schaffer, M. M. (1978). Context theory of classification learning. Psychological review, 85(3), 207.
    Newell, B. R., Dunn, J. C., & Kalish, M. (2010). The dimensionality of perceptual category learning: A state-trace analysis. Memory & Cognition, 38(5), 563-581.
    Newell, B. R., Dunn, J. C., & Kalish, M. (2011). Systems of category learning: fact or fantasy? Psychology of learning and motivation (Vol. 54, pp. 167-215): Elsevier.
    Nosofsky, R. M. (1986). Attention, similarity, and the identification–categorization relationship. Journal of experimental psychology: General, 115(1), 39.
    Nosofsky, R. M. (1987). Attention and learning processes in the identification and categorization of integral stimuli. Journal of Experimental Psychology: Learning, Memory, and Cognition, 13(1), 87.
    Nosofsky, R. M., & Johansen, M. K. (2000). Exemplar-based accounts of" multiple-system" phenomena in perceptual categorization. Psychonomic Bulletin and Review, 7(3), 375-402.
    Nosofsky, R. M., & Kruschke, J. K. (2002). Single-system models and interference in category learning: Commentary on Waldron and Ashby (2001). Psychonomic Bulletin & Review, 9(1), 169-174.
    Nosofsky, R. M., Palmeri, T. J., & McKinley, S. C. (1994). Rule-plus-exception model of classification learning. Psychological review, 101(1), 53.
    Nosofsky, R. M., Stanton, R. D., & Zaki, S. R. (2005). Procedural interference in perceptual classification: Implicit learning or cognitive complexity? Memory & Cognition, 33(7), 1256-1271.
    Reed, S. K. (1972). Pattern recognition and categorization. Cognitive psychology, 3(3), 382-407.
    Rips, L. J., & Collins, A. (1993). Categories and resemblance. Journal of experimental psychology: General, 122(4), 468.
    Rosch, E., & Mervis, C. B. (1975). Family resemblances: Studies in the internal structure of categories. Cognitive psychology, 7(4), 573-605.
    Roth, E. M., & Shoben, E. J. (1983). The effect of context on the structure of categories. Cognitive psychology, 15(3), 346-378.
    Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations by back-propagating errors. nature, 323(6088), 533.
    Shepard, R. N. (1986). Discrimination and generalization in identification and classification: Comment on Nosofsky.
    Smith, D. J., & Minda, J. P. (1998). Prototypes in the mist: The early epochs of category learning. Journal of Experimental Psychology: Learning, Memory, and Cognition, 24(6), 1411.
    Smith, D. J., & Minda, J. P. (2000). Thirty categorization results in search of a model. Journal of Experimental Psychology: Learning, Memory, and Cognition, 26(1), 3.
    Smith, E. E., & Sloman, S. A. (1994). Similarity-versus rule-based categorization. Memory & Cognition, 22(4), 377-386.
    Yang, L.-X. (2016, November). A reference point explanation for XOR extrapolation in categorization with kernel methods. Paper presented at the 57th annual meeting of the Psychonomic Society, Boston, America.
    Yang, L.-X. (2017, November). Individual differences in categorization strategy and working memory capacity. Paper presented at the 58th annual meeting of the Psychonomic Society, Vancouver, Canada.
    Yang, L.-X., & Lewandowsky, S. (2003). Context-gated knowledge partitioning in categorization. Journal of Experimental Psychology: Learning, Memory, and Cognition, 29(4), 663.
    Yang, L.-X., & Lewandowsky, S. (2004). Knowledge partitioning in categorization: constraints on exemplar models. Journal of Experimental Psychology: Learning, Memory, and Cognition, 30(5), 1045.
    Zeithamova, D., & Maddox, W. T. (2006). Dual-task interference in perceptual category learning. Memory & Cognition, 34(2), 387-398.
    Description: 碩士
    國立政治大學
    心理學系
    104752007
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G1047520072
    Data Type: thesis
    DOI: 10.6814/THE.NCCU.PSY.007.2018.C01
    Appears in Collections:[心理學系] 學位論文

    Files in This Item:

    File SizeFormat
    007201.pdf2594KbAdobe PDF2158View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback