Loading...
|
Please use this identifier to cite or link to this item:
https://nccur.lib.nccu.edu.tw/handle/140.119/116040
|
Title: | 大數據時代廣告行銷策略分析 An Exploratory Study on Advertising & Marketing Strategies of Big Data Age |
Authors: | 應淇帆 Ying, Ci-Fan (Lisa YIng) |
Contributors: | 詹文男 Zhan, Wennan 應淇帆 Ying, Ci-Fan (Lisa YIng) |
Keywords: | 大數據 數位行銷 策略分析 Big data Digital marketing Strategic analysis |
Date: | 2018 |
Issue Date: | 2018-03-02 11:44:04 (UTC+8) |
Abstract: | 企業在行銷產品時,第一需透過大數據資訊了解消費者,第二更要善 用大數據選擇適合的媒體投放,再從投放效果進一步抓到更精準的消費者 進行再行銷,不斷測試以提升廣告投資效率(ROI)。
大數據的趨勢已經改變全球商業環境,大眾傳播行銷不再有效,企業 行銷已經需要走向個人化行銷,台灣企業更必須有扭轉運作思維、調整行 銷策略。根據本研究顯示,大部份企業已經開始掌握大數據的趨勢,不僅 有一半以上的企業在內部成立大數據相關部門,更自行建立資料庫,甚至 自行成立廣告投放平台,另外也有公司會透過資訊部門與行銷部門成立跨 部門專案或是與外部專業團隊策略聯盟。
但是目前缺乏相關領域人才資料,資訊太多無法整合、資料老舊格式 不一,是目前企業主管普遍認為大數據較難推動的地方。本研究從新的4 P理論,認為大數據可以進行新4P:人(People):精準分析消費者因人而異的狀態,成效(Performance):找到能帶動成效的 行銷方式,步驟(Process)運用數據優先處理危急問題預測,預測(Prediction)精準預測顧客下次回購時間。本研究顯示出 台灣各企業主管針對大數據帶動新4P理論和成效多半表示認同,不過, 企業主管認為要解決缺乏相關領域人才的問題,更需加強資訊整合工作, 並且採用適合的軟體工具。企業主管更需有改變領導風格、且需投入相當成本進行大數據分析的決心。 Serving TV media and corporate marketing department nearly one decade, I found that the use of big data would become a significant issue. Firstly, enterprises need to understand consumers through big data, secondly should make good use of big data to select appropriate media, and then from the delivery results to further capture more accurate consumers to improve efficiency.
Big data trends have changed the global business environment, mass media marketing is no longer valid, mass marketing has to move toward personalized marketing. Taiwanese companies must reverse thinking in terms of marketing strategies. According to this study, most enterprises have started to grasp the trend of big data. Not only are more than half of them setting up their own big data-related departments internally, but also establishing their own databases or even setting up their own advertising platforms. In addition, some companies set up cross-departmental projects or strategic alliances with external professional teams.
However, the current lack of relevant personnel, too much information that cannot be integrated, the old format, it is generally believed that corporate executives more difficult to promote big data. From the new 4P theory, think big data can make a new 4P: People (Precise analysis of the consumer status), Performance (Find ways to promote the effectiveness of marketing), Process (the use of data-priority), and Prediction (Precisely predict the next customer repurchase time). At present, most business executives in Taiwan are agreeing to drive the new 4P theory and effectiveness in response to big data. However, business executives think that it is necessary to solve the problem of lack of qualified personnel in related fields and to strengthen information integration, and use the appropriate software tools. Business executives need to change leadership style, and need to invest considerable cost of big data analysis. |
Reference: | 一、中文文獻:
參考文獻
1. 陳傑豪(2015)。大數據玩行銷。第一版:台北市。遠見天下。
2. 劉幼琍主編(2016)。大數據與未來傳播。第一版:台北市。五
南書局。
3. 李郁怡(2015)。尋找品牌行銷引爆點,哈佛商業週刊2015
年11月號。
4. 廖晨旭(2014)。「大數據分析時代壽險業之因應對策」。國立政
治大學經營管理碩士學程(EMBA) 。
5. 鄭美華(2017) 。數據分析與個人資料保護之衝突: 從收視
行為調查談起。國立政治大學法律科際整合研究所。
6. 陳怡安(2015)。大數據思維下行銷傳播。台北科技大學經營管
理系碩士班。
7. 李郁怡等(2015),「大數據 再進化」,數位時代,83期20
15年5月號。
8. 劉文良(2017)。顧客關係管理:新時代的決勝關鍵。第一版:
台北。碁峰 。
9. 江裕真譯(2014)。大數據@工作力:如何運用巨量資料,打造
個人與企業競爭優勢。臺北:天下文化。
10. 社群X電商-賣什麼都狂銷(2016)。臺北:今周刊。
二、英文文獻
1. Mcquail, d., (1992). Media performance: mass communication and the public interest.
2. Mayer-schönberger, v. & cukier, k., (2013). big data.
3. Surdak, c., (2014). Data crush: how the information tidal wave is driving new business opportunities.
4. Burke, Mary A., and Ali Ozdagli.(2013).“Household inflation
expectations and consumer spending: evidence from panel data.” No.13-25. Working Papers, Federal Reserve Bank of Boston.
5. Choi, Hyunyoung, and Hal Varian. (2012). “Predicting the present with google trends.” Economic Record, 88(s1):2-9.
6. Davenport, Thomas H., and Gilbert J. Probst. (2002). Knowledge management casebook: Siemens best practices. John Wiley & Sons,Inc.
7. Da, Zhi, Joseph Engelberg, and Pengjie GAO. (2011) “In search ofattention.” The Journal of Finance 66.5: 1461-1499.
8. DePaolo, Concetta A., and Kelly Wilkinson. (2014). “Recurrent
online quizzes: Ubiquitous tools for promoting student presence, participation and performance.” Interdisciplinary Journal of E-Learning and Learning Objects, 10:75-91.
9. Hamid, Alain, and Moritz Heiden (2015). “Forecasting Volatility with Empirical Similarity and Google Trends.” Journal of Economic Behavior & Organization, No. 117: 62–81. |
Description: | 碩士 國立政治大學 經營管理碩士學程(EMBA) 104932100 |
Source URI: | http://thesis.lib.nccu.edu.tw/record/#G0104932100 |
Data Type: | thesis |
Appears in Collections: | [經營管理碩士學程EMBA] 學位論文
|
Files in This Item:
File |
Size | Format | |
210001.pdf | 1393Kb | Adobe PDF2 | 3077 | View/Open |
|
All items in 政大典藏 are protected by copyright, with all rights reserved.
|