English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 114105/145137 (79%)
Visitors : 52181418      Online Users : 252
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/115967


    Title: Distinguishing Medical Web Pages from Pornographic Ones: An Efficient Pornography Websites Filtering Method.
    Authors: 許志堅
    Sheu, Jyh-Jian
    Contributors: 廣電系
    Keywords: Data Mining;Decision Tree;Medical Web Page;Pornographic Websites Filtering
    Date: 2017-09
    Issue Date: 2018-02-09 17:35:09 (UTC+8)
    Abstract: In this paper, we apply the uncomplicated decision tree data mining algorithm to find association rules about pornographic and medical web pages. On the basis of these association rules, we propose a systematized method of filtering pornographic websites with the following major superiorities: 1) Check only contexts of web pages without scanning pictures to avoid the low operating efficiency in analyzing photographs. Moreover, the error rate is lowered and the accuracy of filtering is enhanced simultaneously. 2) While filtering the pornographic web pages accurately, the misjudgments of identifying medical web pages as pornographic ones will be reduced effectively. 3) A re-learning mechanism is designed to improve our filtering method incrementally. Therefore, the revision information learned from the misjudged web pages can incrementally give feedback to our method and improve its effectiveness. The experimental results showed that each efficacy assessment indexes reached a satisfactory value. Therefore, we can conclude that the proposed method is possessed of outstanding performance and effectivity.
    Relation: International Journal of Network Security, 19(5), 834-845.
    Data Type: article
    DOI 連結: http://dx.doi.org/10.6633%2fIJNS.201709.19(5).22
    DOI: 10.6633/IJNS.201709.19(5).22
    Appears in Collections:[廣播電視學系] 期刊論文

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML2770View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback