English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 114205/145239 (79%)
Visitors : 52520578      Online Users : 426
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 資訊學院 > 資訊科學系 > 學位論文 >  Item 140.119/115463
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/115463


    Title: 針對社群媒體上的趨勢變化之視覺化探索工具
    A study of visual exploration tool for comparing trend
    Authors: 郭建凱
    Kuo, Jian-Kai
    Contributors: 紀明德
    Chi, Ming-Te
    郭建凱
    Kuo, Jian-Kai
    Keywords: 資料視覺化
    多維度資料
    時序性資料
    社群網路
    Date: 2017
    Issue Date: 2018-01-03 16:20:31 (UTC+8)
    Abstract: 隨著社群媒體的普及,新聞媒體與意見領袖逐漸重視在社群媒體上以貼文方式發佈新聞資訊,社群媒體成為許多使用者會接收新聞與重大事件的主要管道且透過社群媒體的評論、分享與按讚等互動機制表達立場,這些即時互動行為是傳統媒體缺乏的機制,如何分析也是研究上的挑戰。本研究將針對Facebook上的貼文與互動行為進行分析,提供一款互動視覺化系統,找出貼文資料集中相似的貼文群集以及隨著時間推移下貼文屬性的變化,進一步瞭解Facebook上使用者、貼文與重大事件之間的相互影響。由於Facebook上的貼文與互動行為具多維度屬性,我們透過降維演算法將大量的貼文以二維散佈圖呈現,達到將相似貼文分群的效果。另外,我們設計了一種視覺化呈現方法,「Time Block」,突顯出時間的推移下貼文屬性的變化,藉此觀察出貼文資料集是否存在特定的模式。最後提供即時互動的操作介面,以及貼文屬性以及關鍵字兩者的統計,藉此連接到貼文集的屬性與時間的分佈關係,協助以視覺化方式進行探索與分析。最後,透過案例分析與使用者測試呈現此視覺化探索工具的優缺點。
    Social media becomes an essential medium for broadcast news. News media and option leader post information and people love to receive news and interactive using comment and likes to feedback. It is a research challenge to analysis this massive amount interactive behavior data in social media. In this paper, we propose an interactive visualization system to explore on the posts and interactions on Facebook. This system can help a user to find out the similar interactive behavior cluster and the trend of time-varying attributes to understand how the users, posts, and a big event to affect each other. Facebook Posts and interactive behavior contains multiple dimensional attributes; we adopt the dimensional reduce algorithm and 2D scatter plot to present the cluster in the spatial domain. Then, we design a time-varying visualization method, "Time Block,` can highlight the changing attributes and observe the unique pattern in the time domain. Also, we design a real-time interactive interface to connect the cluster and trend visualization with additional keyword distribution and attribute statistics. Finally, we use case study and user study to demonstrate the advantage of the proposed system.
    Reference: [1]B. Bach, N. Henry‐Riche, T. Dwyer, T. Madhyastha, J. D. Fekete, and T. Grabowski, "Small MultiPiles: Piling time to explore temporal patterns in dynamic networks," in Computer Graphics Forum, 2015, vol. 34, no. 3, pp. 31-40: Wiley Online Library.
    [2]B. Bach, C. Shi, N. Heulot, T. Madhyastha, T. Grabowski, and P. Dragicevic, "Time curves: Folding time to visualize patterns of temporal evolution in data," IEEE transactions on visualization and computer graphics, vol. 22, no. 1, pp. 559-568, 2016.
    [3]R. Blanch, R. Dautriche, and G. Bisson, "Dendrogramix: A hybrid tree-matrix visualization technique to support interactive exploration of dendrograms," in Visualization Symposium (PacificVis), 2015 IEEE Pacific, 2015, pp. 31-38: IEEE.
    [4]N. Cao, C. Shi, S. Lin, J. Lu, Y.-R. Lin, and C.-Y. Lin, "TargetVue: Visual analysis of anomalous user behaviors in online communication systems," IEEE transactions on visualization and computer graphics, vol. 22, no. 1, pp. 280-289, 2016.
    [5]J. Chen, A. M. MacEachren, and D. J. Peuquet, "Constructing overview+ detail dendrogram-matrix views," IEEE transactions on visualization and computer graphics, vol. 15, no. 6, pp. 889-896, 2009.
    [6]Q. Cui, M. O. Ward, and E. A. Rundensteiner, "Enhancing scatterplot matrices for data with ordering or spatial attributes," in Electronic Imaging 2006, 2006, pp. 60600R-60600R-11: International Society for Optics and Photonics.
    [7]M. Hu, K. Wongsuphasawat, and J. Stasko, "Visualizing Social Media Content with SentenTree," IEEE Transactions on Visualization and Computer Graphics, vol. 23, no. 1, pp. 621-630, 2017.
    [8]M. Kim, K. Kang, D. Park, J. Choo, and N. Elmqvist, "Topiclens: Efficient multi-level visual topic exploration of large-scale document collections," IEEE Transactions on Visualization and Computer Graphics, vol. 23, no. 1, pp. 151-160, 2017.
    [9]B. Kondo and C. Collins, "Dimpvis: Exploring time-varying information visualizations by direct manipulation," IEEE transactions on visualization and computer graphics, vol. 20, no. 12, pp. 2003-2012, 2014.
    [10]L. v. d. Maaten and G. Hinton, "Visualizing data using t-SNE," Journal of Machine Learning Research, vol. 9, no. Nov, pp. 2579-2605, 2008.
    [11]S. Rufiange and M. J. McGuffin, "DiffAni: Visualizing dynamic graphs with a hybrid of difference maps and animation," IEEE Transactions on Visualization and Computer Graphics, vol. 19, no. 12, pp. 2556-2565, 2013.
    [12]J. Stasko, R. Catrambone, M. Guzdial, and K. McDonald, "An evaluation of space-filling information visualizations for depicting hierarchical structures," International journal of human-computer studies, vol. 53, no. 5, pp. 663-694, 2000.
    [13]J. Stasko and E. Zhang, "Focus+ context display and navigation techniques for enhancing radial, space-filling hierarchy visualizations," in Information Visualization, 2000. InfoVis 2000. IEEE Symposium on, 2000, pp. 57-65: IEEE.
    [14]F. Viégas et al., "Google+ ripples: A native visualization of information flow," in Proceedings of the 22nd international conference on World Wide Web, 2013, pp. 1389-1398: ACM.
    [15]M. Wattenberg, F. Viégas, and I. Johnson, "How to Use t-SNE Effectively," Distill, vol. 1, no. 10, p. e2, 2016.
    [16]F. Wickelmaier, "An introduction to MDS," Sound Quality Research Unit, Aalborg University, Denmark, vol. 46, 2003.
    [17]X. Yuan, D. Ren, Z. Wang, and C. Guo, "Dimension projection matrix/tree: Interactive subspace visual exploration and analysis of high dimensional data," IEEE Transactions on Visualization and Computer Graphics, vol. 19, no. 12, pp. 2625-2633, 2013.
    [18]F. Zhou et al., "Dimension reconstruction for visual exploration of subspace clusters in high-dimensional data," in Pacific Visualization Symposium (PacificVis), 2016 IEEE, 2016, pp. 128-135: IEEE.
    [19]MUNZNER, Tamara. Visualization analysis and design. CRC press, 2014.
    [20]https://developers.facebook.com/docs/graph-api/advanced/rate-limiting
    [21]https://github.com/yanyiwu/nodejieba/blob/master/README_EN.md
    Description: 碩士
    國立政治大學
    資訊科學學系
    104753026
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0104753026
    Data Type: thesis
    Appears in Collections:[資訊科學系] 學位論文

    Files in This Item:

    File SizeFormat
    302601.pdf5946KbAdobe PDF2269View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback