English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113648/144635 (79%)
Visitors : 51616402      Online Users : 500
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/113246


    Title: Mining generalized fuzzy association rules from web pages
    Authors: Tang, Yi-Tsung
    Chiu, Hung-Pin
    Keywords: 模糊資料挖掘;關聯法則
    Fuzzy data mining;association rules
    Date: 2005
    Issue Date: 2017-09-29 17:34:19 (UTC+8)
    Abstract: 模糊關聯法則的挖掘是資料挖掘(Data Mining)中一個重要的部分,也有許多的方法相繼被提出。然而,這些演算法對於處理實際資料上的效率仍然有改進的空間。本研究提出了一個有效率的方法(Cluster-Based Fuzzy Association Rule:CBFAR)來從許多網頁中找出模糊關聯法則,並改進挖掘的處理效率,此方法以分群表(cluster table)的關念來儲存網頁瀏覽次數之模糊值,在大項目組的產生過程中,只需掃描瀏覽資料庫一次並去除許多不必要的資料比對時間,有效的減少處理時間,改進效率。
    The discovery of fuzzy association rules is an important data-mining task for which many algorithms have been proposed. However, the efficiency of these algorithms needs to be improved to handle real-world large datasets. In this paper, we present an efficient method named cluster-based fuzzy association rule (CBFAR) to discover generalized fuzzy association rules from web pages. The CBFAR method is to create fuzzy cluster tables by scanning the browse information database (BIDB) once, and then clustering the browse records to the k-th cluster table, where the length of a record is k. The counts of the fuzzy regions are stored in the Fuzzy_Cluster Tables. This method requires less contrast to generate large itemsets. The CBFAR method is also discussed.
    Relation: TANET 2005 台灣網際網路研討會論文集
    電子商務與電子化政府
    Data Type: conference
    Appears in Collections:[TANET 台灣網際網路研討會] 會議論文

    Files in This Item:

    File Description SizeFormat
    246.pdf155KbAdobe PDF2178View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback