Loading...
|
Please use this identifier to cite or link to this item:
https://nccur.lib.nccu.edu.tw/handle/140.119/112622
|
Title: | 探索類神經網路於網路流量異常偵測中的時效性需求 Exploring the timeliness requirement of artificial neural networks in network traffic anomaly detection |
Authors: | 連茂棋 Lian, Mao-Ci |
Contributors: | 蔡瑞煌 Tsaih, Rua-Huan 連茂棋 Lian, Mao-Ci |
Keywords: | 網路流量異常偵測 機器學習 GPU平行運算 類神經網絡 張量流 Network traffic anomaly detection Machine learning GPU parallel operation Artificial neural networks TensorFlow |
Date: | 2017 |
Issue Date: | 2017-09-13 14:15:54 (UTC+8) |
Abstract: | 雲端的盛行使得人們做任何事都要透過網路,但是總會有些有心人士使用一些惡意程式來創造攻擊或通過網絡連接竊取資料。為了防止這些網路惡意攻擊,我們必須不斷檢查網路流量資料,然而現在這個雲端時代,網路的資料是非常龐大且複雜,若要檢查所有網路資料不僅耗時而且非常沒有效率。 本研究使用TensorFlow與多個圖形處理器(Graphics Processing Unit, GPU)來實作類神經網路(Artificial Neural Networks, ANN)機制,用以分析網路流量資料,並得到一個可以判斷正常與異常網路流量的偵測規則,也設計一個實驗來驗證我們提出的類神經網路機制是否符合網路流向異常偵測的時效性和有效性。 在實驗過程中,我們發現使用更多的GPU可以減少訓練類神經網路的時間,並且在我們的實驗設計中使用三個GPU進行運算可以達到網路流量異常偵測的時效性。透過該方法得到的初步實驗結果,我們提出機制的結果優於使用反向傳播算法訓練類神經網路得到的結果。 The prosperity of the cloud makes people do anything through the Internet, but there are people with bad intention to use some malicious programs to create attacks or steal information through the network connection. In order to prevent these cyber-attacks, we have to keep checking the network traffic information. However, in the current cloud environment, the network information is huge and complex that to check all the information is not only time-consuming but also inefficient. This study uses TensorFlow with multiple Graphic Processing Units (GPUs) to implement an Artificial Neural Networks (ANN) mechanism to analyze network traffic data and derive detection rules that can identify normal and malicious traffics, and we call it Network Traffic Anomaly Detection (NTAD). Experiments are also designed to verify the timeliness and effectiveness of the derived ANN mechanism. During the experiment, we found that using more GPUs can reduce training time, and using three GPUs to do the operation can meet the timeliness in NTAD. As a result of this method, the experiment result was better than ANN with back propagation mechanism. |
Reference: | 1. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., ... & Ghemawat, S. (2016). Tensorflow: Large-scale machine learning on heterogeneous distributed systems. arXiv preprint arXiv:1603.04467. 2. Armbrust, M., Fox, A., Griffith, R., Joseph, A. D., Katz, R., Konwinski, A., ... & Zaharia, M. (2010). A view of cloud computing. Communications of the ACM, 53(4), 50-58. 3. Coates, A., Huval, B., Wang, T., Wu, D., Catanzaro, B., & Andrew, N. (2013, February). Deep learning with COTS HPC systems. In International Conference on Machine Learning (pp. 1337-1345). 4. Ghiassi, M., Saidane, H., & Zimbra, D. K. (2005). A dynamic artificial neural network model for forecasting time series events. International Journal of Forecasting, 21(2), 341-362. 5. Huang, G. B., Zhu, Q. Y., & Siew, C. K. (2006). Extreme learning machine: theory and applications. Neurocomputing, 70(1), 489-501. 6. Huang, S. Y., Yu, F., Tsaih, R. H., & Huang, Y. (2014, July). Resistant learning on the envelope bulk for identifying anomalous patterns. In Neural Networks (IJCNN), 2014 International Joint Conference on (pp. 3303-3310). IEEE. 7. Kim, M. S., Kong, H. J., Hong, S. C., Chung, S. H., & Hong, J. W. (2004, April). A flow-based method for abnormal network traffic detection. In Network operations and management symposium, 2004. NOMS 2004. IEEE/IFIP (Vol. 1, pp. 599-612). IEEE. 8. Kirk, D. (2007, October). NVIDIA CUDA software and GPU parallel computing architecture. In ISMM (Vol. 7, pp. 103-104). 9. Mahoney, M. V. (2003, March). Network traffic anomaly detection based on packet bytes. In Proceedings of the 2003 ACM symposium on Applied computing (pp. 346-350). ACM. 10. Mahoney, M. V., & Chan, P. K. (2003, November). Learning rules for anomaly detection of hostile network traffic. In Data Mining, 2003. ICDM 2003. Third IEEE International Conference on (pp. 601-604). IEEE. 11. Mukherjee, B., Heberlein, L. T., & Levitt, K. N. (1994). Network intrusion detection. IEEE network, 8(3), 26-41. 12. Owens, J. D., Houston, M., Luebke, D., Green, S., Stone, J. E., & Phillips, J. C. (2008). GPU computing. Proceedings of the IEEE, 96(5), 879-899. 13. Paxson, V. (1999). Bro: a system for detecting network intruders in real-time. Computer networks, 31(23), 2435-2463. 14. Rasmussen, C. E. (2004). Gaussian processes in machine learning. In Advanced lectures on machine learning (pp. 63-71). Springer Berlin Heidelberg. 15. Roesch, M. (1999, November). Snort: Lightweight intrusion detection for networks. In Lisa (Vol. 99, No. 1, pp. 229-238). 16. Roger, P. (2016). Why Deep Learning Is Suddenly Changing Your Life. FORTUNE. [Online]. Available: http://fortune.com/ai-artificial-intelligence-deep-machine-learning/ 17. Ryan, J., Lin, M. J., & Miikkulainen, R. Intrusion detection with neural networks. 1998. http://citeseer. ist. psu. edu/ryan98intrusion. html-consultado em, 30, 03-04. 18. Shon, T., & Moon, J. (2007). A hybrid machine learning approach to network anomaly detection. Information Sciences, 177(18), 3799-3821. 19. Shon, T., Kim, Y., Lee, C., & Moon, J. (2005, June). A machine learning framework for network anomaly detection using SVM and GA. In Information Assurance Workshop, 2005. IAW`05. Proceedings from the Sixth Annual IEEE SMC (pp. 176-183). IEEE. 20. Singh, S., & Silakari, S. (2009). A survey of cyber attack detection systems. International Journal of Computer Science and Network Security, 9(5), 1-10. 21. Sommer, R., & Paxson, V. (2010, May). Outside the closed world: On using machine learning for network intrusion detection. In Security and Privacy (SP), 2010 IEEE Symposium on (pp. 305-316). IEEE. 22. Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I., & Fergus, R. (2013). Intriguing properties of neural networks. arXiv preprint arXiv:1312.6199. 23. Tsaih, R. R. (1993). The softening learning procedure. Mathematical and computer modelling, 18(8), 61-64. 24. Want China Times. (2013). Taiwan and Philippines in cyber war over fatal shooting. May 12th. 25. William, T. (2017). What Machine Learning Can (and Can`t). DMNEWS. [Online]. Available: http://www.dmnews.com/what-machine-learning--can-and-cant-do/printarticle/642415/ 26. Zander, S., Nguyen, T., & Armitage, G. (2005, November). Automated traffic classification and application identification using machine learning. In Local Computer Networks, 2005. 30th Anniversary. The IEEE Conference on (pp. 250-257). IEEE. 27. Zweiri, Y. H., Seneviratne, L. D., & Althoefer, K. (2005). Stability analysis of a three-term backpropagation algorithm. Neural Networks, 18(10), 1341-1347. |
Description: | 碩士 國立政治大學 資訊管理學系 104356040 |
Source URI: | http://thesis.lib.nccu.edu.tw/record/#G0104356040 |
Data Type: | thesis |
Appears in Collections: | [資訊管理學系] 學位論文
|
Files in This Item:
File |
Size | Format | |
604001.pdf | 1682Kb | Adobe PDF2 | 31 | View/Open |
|
All items in 政大典藏 are protected by copyright, with all rights reserved.
|