政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/112385
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113869/144892 (79%)
Visitors : 51892647      Online Users : 548
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/112385


    Title: 基於點群排序關係的動態設定特徵描述子建構及優化
    Construction and optimization of feature descriptor based on dynamic local intensity order relations of pixel group
    Authors: 游佳霖
    Yu, Carolyn
    Contributors: 廖文宏
    Liao, Wen-Hung
    游佳霖
    Yu, Carolyn
    Keywords: 特徵描述子
    點群排序關係
    影像比對
    Local feature descriptors
    Dynamic intensity order relations
    Image matching
    Date: 2017
    Issue Date: 2017-08-31 12:15:29 (UTC+8)
    Abstract: 隨著智慧型手機的普及,在移動裝置上直接處理圖像的需求也大幅增加,故對於影像特徵描述子的要求,除了要表現出區域特徵的穩健性,同時也要維持良好的特徵比對效率與合理的儲存空間。過去所提出的區域影像特徵描述子建構方法之中,LIOP方法具有相當不錯的表現力,但其特徵描述子維度會隨著點群取樣數量的提高而以倍數增加,因此本研究提出Dynamic Local Intensity Order Relations (DLIOR)特徵描述子建構方法,利用LIOR方法探討點群中點與點之間的關係,減緩其維度增長幅度;透過動態設定像素差距門檻值,處理影像間像素差距分佈不均的問題,並使用線性轉換、點對歐幾里德距離等方式,重新定義描述子欄位的權重設定。經過實驗證實,DLIOR方法能夠使用比LIOP方法更少的維度空間,描述更多點群數的特徵資訊,並且具有更高的特徵比對能力。
    With the popularity of smart phones, the amounts of images being captured and processed on mobile devices have grown significantly in recent years. Image feature descriptors, which play crucial roles in recognition tasks, are expected to exhibit robust matching performance while at the same time maintain reasonable storage requirement. Among the local feature descriptors that have been proposed previously, local intensity order patterns (LIOP) demonstrated superior performance in many benchmark studies. As LIOP encodes the ranking relation in a point set (with N elements), however, its feature dimension increases drastically (N!) with the number of the neighboring sampling points around a pixel. To alleviate the dimensionality issue, this thesis presents a local feature descriptor by considering pairwise intensity relation in a pixel group, thereby reducing feature dimension to the order of C^N_2. In the proposed method, the threshold for assigning order relation is set dynamically according to local intensity distribution. Different weighting schemes, including linear transformation and Euclidean distance, have also been investigated to adjust the contribution of each pairing relation. Ultimately, the dynamic local intensity order relations (DLIOR) is devised to effectively encode intensity order relation of each pixel group. Experimental results indicate that DLIOR consumes less storage space than LIOP but achieves better feature matching performance using benchmark dataset.
    Reference: [1] Zhenhua Wang, Bin Fan, and Fuchao Wu. Local intensity order pattern for feature description. In Computer Vision (ICCV), 2011 IEEE International Conference on, pages 603–610. IEEE, 2011.
    [2] Wen-Hung Liao, Chia-Chen Wu, and Ming-Ching Lin. Feature descriptor based on local intensity order relations of pixel group. In Pattern Recognition (ICPR), 2016 23rd International Conference on, pages 1977–1981. IEEE, 2016.
    [3] Krystian Mikolajczyk and Cordelia Schmid. Scale & affine invariant interest point detectors. International journal of computer vision, 60(1):63–86, 2004.
    [4] Maurice George Kendall. Rank correlation methods. 1948.
    [5] David G Lowe. Distinctive image features from scale-invariant keypoints. International journal of computer vision, 60(2):91–110, 2004.
    [6] David G Lowe. Object recognition from local scale-invariant features. In Computer vision, 1999. The proceedings of the seventh IEEE international conference on, volume 2, pages 1150–1157. Ieee, 1999.
    [7] Herbert Bay, Tinne Tuytelaars, and Luc Van Gool. Surf: Speeded up robust features. In European conference on computer vision, pages 404–417. Springer, 2006.
    [8] Engin Tola, Vincent Lepetit, and Pascal Fua. Daisy: An efficient dense descriptor applied to wide-baseline stereo. IEEE transactions on pattern analysis and machine intelligence, 32(5):815–830, 2010.
    [9] Timo Ojala, Matti Pietikäinen, and David Harwood. A comparative study of texture measures with classification based on featured distributions. Pattern recognition, 29(1):51–59, 1996.
    [10] Timo Ojala, Matti Pietikainen, and Topi Maenpaa. Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Transactions on pattern analysis and machine intelligence, 24(7):971–987, 2002.
    [11] Michael Calonder, Vincent Lepetit, Christoph Strecha, and Pascal Fua. Brief: Binary robust independent elementary features. In European conference on computer vision, pages 778–792. Springer, 2010.
    [12] Ethan Rublee, Vincent Rabaud, Kurt Konolige, and Gary Bradski. Orb: An efficient alternative to sift or surf. In Computer Vision (ICCV), 2011 IEEE International Conference on, pages 2564–2571. IEEE, 2011.
    [13] Stefan Leutenegger, Margarita Chli, and Roland Y Siegwart. Brisk: Binary robust invariant scalable keypoints. In Computer Vision (ICCV), 2011 IEEE International Conference on, pages 2548–2555. IEEE, 2011.
    [14] Alexandre Alahi, Raphael Ortiz, and Pierre Vandergheynst. Freak: Fast retina keypoint. In Computer vision and pattern recognition (CVPR), 2012 IEEE conference on, pages 510–517. Ieee, 2012.
    [15] Zhenhua Wang, Bin Fan, Gang Wang, and Fuchao Wu. Exploring local and overall ordinal information for robust feature description. IEEE transactions on pattern analysis and machine intelligence, 38(11):2198–2211, 2016.
    [16] Ondrej Miksik and Krystian Mikolajczyk. Evaluation of local detectors and descriptors for fast feature matching. In Pattern Recognition (ICPR), 2012 21st International Conference on, pages 2681–2684. IEEE, 2012.
    [17] Krystian Mikolajczyk, Tinne Tuytelaars, Cordelia Schmid, Andrew Zisserman, Jiri Matas, Frederik Schaffalitzky, Timor Kadir, and Luc Van Gool. A comparison of affine region detectors. International journal of computer vision, 65(1-2):43–72, 2005.
    [18] Krystian Mikolajczyk and Cordelia Schmid. A performance evaluation of local descriptors. IEEE transactions on pattern analysis and machine intelligence, 27(10):1615–1630, 2005.
    Description: 碩士
    國立政治大學
    資訊科學學系
    104753007
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0104753007
    Data Type: thesis
    Appears in Collections:[Department of Computer Science ] Theses

    Files in This Item:

    File SizeFormat
    300701.pdf30001KbAdobe PDF2306View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback