Loading...
|
Please use this identifier to cite or link to this item:
https://nccur.lib.nccu.edu.tw/handle/140.119/111782
|
Title: | 一個卡特蘭等式的組合證明 A Combinatorial Proof of a Catalan Identity |
Authors: | 劉映君 |
Contributors: | 李陽明 劉映君 |
Keywords: | 卡特蘭等式 Catalan Identity |
Date: | 2017 |
Issue Date: | 2017-08-10 09:57:57 (UTC+8) |
Abstract: | 在這篇論文裡,我們探討卡塔蘭等式 (n + 2)Cn+1 = (4n + 2)C2 的證明 方法。以往都是用計算的方式來呈現卡塔蘭等式的由來,但我們選擇用組合 的方法來證明卡塔蘭等式。 這篇論文主要是應用 Cn+1 壞路徑對應到打點 Cn 好路徑以及 Cn+1 好路 徑對應到打點 Cn 壞路徑的⽅式來證明卡特蘭等式。 In this thesis, we give another approach to prove Catalan identity, (n + 2)Cn+1 = (4n + 2)C2. In the past we use the method of computation to show Catalan Identity, in this thesis we choose a combinatorial proof of the Catalan identity. This thesis is primary using the functions from Cn+1 totally bad path to Cn dotted good path, and from Cn+1 good path to Cn dotted totally bad path. |
Reference: | Ronald Alter. Some remarks and results on Catalan numbers. pages 109–132, 1971. [2] Ronald Alter and K. K. Kubota. Prime and prime power divisibility of Catalan numbers. J. Combinatorial Theory Ser. A, 15:243–256, 1973. [3] Federico Ardila. Catalan numbers. Math. Intelligencer, 38(2):4–5, 2016. [4] Young-Ming Chen. The Chung-Feller theorem revisited. Discrete Math., 308(7):1328– 1329, 2008. [5] Ömer E ̆gecioğlu. A Catalan-Hankel determinant evaluation. In Proceedings of the Fortieth Southeastern International Conference on Combinatorics, Graph Theory and Computing, volume 195, pages 49–63, 2009. [6] R. Johnsonbaugh. Discrete Mathematics. Pearson/Prentice Hall, 2009. [7] Thomas Koshy. Catalan numbers with applications. Oxford University Press, Oxford, 2009. [8] Tamás Lengyel. On divisibility properties of some differences of the central binomial coefficients and Catalan numbers. Integers, 13:Paper No. A10, 20, 2013. [9] Youngja Park and Sangwook Kim. Chung-Feller property of Schröder objects. Electron. J. Combin., 23(2):Paper 2.34, 14, 2016. [10] Matej ̌Crepin ̌sek and Luka Mernik. An efficient representation for solving Catalan number related problems. Int. J. Pure Appl. Math., 56(4):589–604, 2009. |
Description: | 碩士 國立政治大學 應用數學系 103751014 |
Source URI: | http://thesis.lib.nccu.edu.tw/record/#G0103751014 |
Data Type: | thesis |
Appears in Collections: | [應用數學系] 學位論文
|
Files in This Item:
File |
Size | Format | |
101401.pdf | 1052Kb | Adobe PDF2 | 483 | View/Open |
|
All items in 政大典藏 are protected by copyright, with all rights reserved.
|