English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113648/144635 (79%)
Visitors : 51671201      Online Users : 34
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 理學院 > 應用數學系 > 學位論文 >  Item 140.119/111782
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/111782


    Title: 一個卡特蘭等式的組合證明
    A Combinatorial Proof of a Catalan Identity
    Authors: 劉映君
    Contributors: 李陽明
    劉映君
    Keywords: 卡特蘭等式
    Catalan Identity
    Date: 2017
    Issue Date: 2017-08-10 09:57:57 (UTC+8)
    Abstract: 在這篇論文裡,我們探討卡塔蘭等式 (n + 2)Cn+1 = (4n + 2)C2 的證明
    方法。以往都是用計算的方式來呈現卡塔蘭等式的由來,但我們選擇用組合
    的方法來證明卡塔蘭等式。
    這篇論文主要是應用 Cn+1 壞路徑對應到打點 Cn 好路徑以及 Cn+1 好路
    徑對應到打點 Cn 壞路徑的⽅式來證明卡特蘭等式。
    In this thesis, we give another approach to prove Catalan identity,
    (n + 2)Cn+1 = (4n + 2)C2. In the past we use the method of computation to show Catalan Identity, in this thesis we choose a combinatorial proof of the Catalan identity.
    This thesis is primary using the functions from Cn+1 totally bad path to Cn dotted good path, and from Cn+1 good path to Cn dotted totally bad path.
    Reference: Ronald Alter. Some remarks and results on Catalan numbers. pages 109–132, 1971.
    [2] Ronald Alter and K. K. Kubota. Prime and prime power divisibility of Catalan numbers.
    J. Combinatorial Theory Ser. A, 15:243–256, 1973.
    [3] Federico Ardila. Catalan numbers. Math. Intelligencer, 38(2):4–5, 2016.
    [4] Young-Ming Chen. The Chung-Feller theorem revisited. Discrete Math., 308(7):1328–
    1329, 2008.
    [5] Ömer E ̆gecioğlu. A Catalan-Hankel determinant evaluation. In Proceedings of the Fortieth
    Southeastern International Conference on Combinatorics, Graph Theory and Computing,
    volume 195, pages 49–63, 2009.
    [6] R. Johnsonbaugh. Discrete Mathematics. Pearson/Prentice Hall, 2009.
    [7] Thomas Koshy. Catalan numbers with applications. Oxford University Press, Oxford,
    2009.
    [8] Tamás Lengyel. On divisibility properties of some differences of the central binomial
    coefficients and Catalan numbers. Integers, 13:Paper No. A10, 20, 2013.
    [9] Youngja Park and Sangwook Kim. Chung-Feller property of Schröder objects. Electron.
    J. Combin., 23(2):Paper 2.34, 14, 2016.
    [10] Matej ̌Crepin ̌sek and Luka Mernik. An efficient representation for solving Catalan number
    related problems. Int. J. Pure Appl. Math., 56(4):589–604, 2009.
    Description: 碩士
    國立政治大學
    應用數學系
    103751014
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0103751014
    Data Type: thesis
    Appears in Collections:[應用數學系] 學位論文

    Files in This Item:

    File SizeFormat
    101401.pdf1052KbAdobe PDF2483View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback