English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113656/144643 (79%)
Visitors : 51749435      Online Users : 559
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 商學院 > 資訊管理學系 > 學位論文 >  Item 140.119/111742
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/111742


    Title: 應用機器學習預測利差交易的收益
    Application of machine learning to predicting the returns of carry trade
    Authors: 吳佳真
    Contributors: 蔡瑞煌
    吳佳真
    Keywords: 機器學習
    利差交易
    類神經網路
    TensorFlow
    圖形處理單元
    Machine learning
    Carry trade
    Artificial neural networks (ANN)
    TensorFlow
    Graphic processing unit (GPU)
    Date: 2017
    Issue Date: 2017-08-10 09:46:03 (UTC+8)
    Abstract: 本研究提出了一個類神經網路機制,可以及時有效的預測利差交易(carry trade)的收益。為了實現及時性,我們將通過Tensorflow和圖形處理單元(GPU)來實作這個機制。此外,類神經網路機制需要處理具有概念飄移和異常值的時間序列數據。而我們將透過設計的實驗來驗證這個機制的及時性與有效性。
    在實驗過程中,我們發現在演算法設置不同的參數將影響類神經網路的性能。本研究將討論不同參數下所產生的不同結果。實驗結果表明,我們所提出的類神經網路機制可以預測出利差交易的收益的動向。希望這個研究將對機器學習和金融領域皆有所貢獻。
    This research derives an artificial neural networks (ANN) mechanism for timely and effectively predicting the return of carry trade. To achieve the timeliness, the ANN mechanism is implemented via the infrastructure of TensorFlow and graphic processing unit (GPU). Furthermore, the ANN mechanism needs to cope with the time series data that may have concept-drifting phenomenon and outliers. An experiment is also designed to verify the timeliness and effectiveness of the proposed mechanism.
    During the experiment, we find that different parameters we set in the algorithm will affect the performance of the neural network. And this research will discuss the different results in different parameters. Our experiment result represents that the proposed ANN mechanism can predict movement of the returns of carry trade well. Hope this research would contribute for both machine learning and finance field.
    Reference: Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., ... & Ghemawat, S. (2016). TensorFlow: Large-scale machine learning on heterogeneous distributed systems. arXiv preprint arXiv: 1603.04467.
    Alexius, A. (2001). Uncovered interest parity revisited. Review of International Economics, 9(3), 505-517.
    Babaeizadeh, M., Frosio, I., Tyree, S., Clemons, J., & Kautz, J. (2016). Reinforcement learning through asynchronous advantage actor-critic on a gpu. arXiv preprint arXiv:1611.06256.
    Barzdins, G., Renals, S., & Gosko, D. (2016). Character-Level Neural Translation for Multilingual Media Monitoring in the SUMMA Project. arXiv preprint arXiv:1604.01221.
    Basu, S., & Meckesheimer, M. (2007). Automatic outlier detection for time series: an application to sensor data. Knowledge and Information Systems, 11(2), 137-154.
    Bekaert, G., & Hodrick, R. J. (1993). On biases in the measurement of foreign exchange risk premiums. Journal of International Money and Finance, 12(2), 115-138.
    Bernardo, A., & Ledoit, O. (1999). Approximate arbitrage. Finance. Retrieved from http://www.anderson.ucla.edu/documents/areas/fac/finance/18-99.pdf
    Bilson, J. F. O. (2013). Adventures in the Carry Trade. Retrieved from http://www.cmegroup.com/education/files/bilson-adventures-in-the-carry-trade.pdf
    Brunnermeier, M. K., Nagel, S., & Pedersen, L. H. (2009). Carry trades and currency crashes. In Daron Acemoglu, Kenneth Rogoff, Michael Woodford (Eds.), NBER Macroeconomics Annual 2008 (Vol. 3), (pp. 313-347). Chicago: University of Chicago Press.
    Burnside, C. (2011). The cross-section of foreign currency risk premia and consumption growth risk: comment. The American Economic Review, 101(7), 3456-3476.
    Burnside, C., Eichenbaum, M., Kleshchelski, I., & Rebelo, S. (2006). The returns to currency speculation. NBER Working Papers, 12489.
    Burnside, C., Eichenbaum, M., Kleshchelski, I., & Rebelo, S., (2011). Do peso problems explain the returns to the carry trade? The Review of Financial Studies, 24(3), 853-891.
    Clinton, K. (1998). Transactions costs and covered interest arbitrage: theory and evidence. Journal of Political Economy, 96(2), 358-370.
    Elwell, R., & Polikar, R. (2011). Incremental learning of concept drift in nonstationary environments. Neural networks, IEEE Transactions on, 22(10), 1517-1531.
    Fama, E. F. (1984). Forward and spot exchange rates. Journal of Monetary Economics, 14(3), 319-338.
    Frankel, J. A. (1980). Tests of rational expectations in the forward exchange market. Southern Economic Journal, 46(4), 1083-1101.
    Frenkel, J. A., & Levich, R. M., (1975). Covered interest rate arbitrage: unexploited profits? Journal of Political Economy, 83(2), 325-338.
    Froot, K. A., & Ramadorai, T. (2008). Institutional portfolio flows and international investments. Review of Financial Studies, 21(2), 937-971.
    Froot, K. A., & Thaler, R. H. (1990). Foreign exchange. The Journal of Economic Perspectives, 4(3), 179-192.
    Fujii, E., & Chinn, M. D. (2000). Fin de Siècle real interest parity. NBER Working Papers, 7880.
    Gama, J., Žliobaitė, I., Bifet, A., Pechenizkiy, M., & Bouchachia, A. (2014). A survey on concept drift adaptation. ACM Computing Surveys (CSUR), 46(4), 44.
    Hodge, V. J., & Austin, J. (2004). A survey of outlier detection methodologies. Artificial Intelligence Review, 22(2), 85-126.
    Hodrick, R. J. (1991) the Empirical Evidence on the Efficiency of Forward and Futures Foreign Exchange Markets, 2nd. edn. London, UK: Routledge.
    Huang, S. Y., Lin, J. W., & Tsaih, R. H. (2016, July). Outlier detection in the concept drifting environment. In Neural Networks (IJCNN), 2016 International Joint Conference on (pp. 31-37). IEEE.
    Huang, S. Y., Yu, F., Tsaih, R. H., & Huang, Y. (2014). Resistant learning on the envelope bulk for identifying anomalous patterns. In Neural networks (IJCNN), 2014 International Joint Conference on, 3303-3310.
    James, J., Marsh, I. W., & Sarno, L. (2012). Handbook of Exchange Rates. New Jersey : Wiley.
    Jordà, Ò., & Taylor, A. M. (2012). The carry trade and fundamentals: Nothing to fear but FEER itself. Journal of International Economics, 88, 74-90.
    Kuan, C. M., & Liu, T. (1995). Forecasting exchange rates using feedforward and recurrent neural networks. Journal of applied econometrics, 10(4), 347-364.
    Kurzweil, R. (2005). The singularity is near: When humans transcend biology. Penguin.
    Lin, C. W. (2015). A Decision Support Mechanism for Outlier Detection in the Concept Drifting Environment (Master`s thesis). Retrieved from http://thesis.lib.nccu.edu.tw/cgi-bin/gs32/gsweb.cgi?o=dallcdr&s=id=%22G0102356002%22.&searchmode=basic
    Lustig, H., & Verdelhan, A. (2007). The cross section of foreign currency risk premia and consumption growth risk. The American Economic Review, 97(1), 89-117.
    Masud, M. M., Chen, Q., Khan, L., Aggarwal, C., Gao, J., Han, J., & Thuraisingham, B. (2010). Addressing concept-evolution in concept-drifting data streams. In Data Mining (ICDM), 2010 IEEE 10th International Conference on. 929-934.
    Masud, M. M., Gao, J., Khan, L., Han, J., & Thuraisingham, B. (2011). Classification and novel class detection in concept-drifting data streams under time constraints. Knowledge and Data Engineering, IEEE Transactions on, 23(6), 859-874.
    McCorduck, P. (2004). Machines Who Think, Natick, MA: A. K. Peters, Ltd.
    McCulloch, W. S., & Pitts, W. (1943). A logical calculus of the ideas immanent in nervous activity. The bulletin of mathematical biophysics, 5(4), 115-133.
    Meese, R. A., & Rogoff, K. (1983). Empirical exchange rate models of the seventies. Journal of International Economics, 14(1-2), 3-24.
    Obstfeld, M., & Taylor, A. M. (2004). Global Capital Markets: Integration, Crisis, and Growth. Cambridge University Press, Cambridge.
    Owens, J. D., Houston, M., Luebke, D., Green, S., Stone, J. E., & Phillips, J. C. (2008). GPU computing. Proceedings of the IEEE, 96(5), 879-899.
    Plantin, G., & Shin, H. S. (2006). Carry trades and speculative dynamics. Retrieved from https://papers.ssrn.com/sol3/papers.cfm?abstract_id=898412
    Poterba, J. M., & Summers, L. H., 1986. The persistence of volatility and stock market fluctuations. The American Economic Review, 76(5), 1142-1151.
    Rousseeuw, P. J., & Van Driessen, K. (2006). Computing LTS regression for large data sets. Data mining and knowledge discovery, 12(1), 29-45.
    Sinclair, P. J. N. (2005). How policy rates affect output, prices, and labour, open economy issues, and inflation and disinflation. In Mahadeva, Lavan, Sinclair, Peter (Eds.), How Monetary Policy Works (pp. 53-81). London: Routledge.
    Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., ... & Rabinovich, A. (2015). Going deeper with convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 1-9).
    Tolvi, J. U. S. S. I. (2002). Outliers and Predictability in Monthly Stock Market Index Returns. Liiketaloudellinen aikakauskirja, 369-380.
    Triennial Central Bank Survey. (2016). Triennial Central Bank Survey Foreign exchange turnover in April 2016. Retrieved from http://www.bis.org/publ/rpfx16fx.pdf
    Trippi, R. R., & Turban, E. (1992). Neural networks in finance and investing: Using artificial intelligence to improve real world performance. McGraw-Hill, Inc.
    Tsaih, R. H., & Cheng, T. C. (2009). A resistant learning procedure for coping with outliers. Annals of Mathematics and Artificial Intelligence, 57(2), 161-180.
    Tsaih, R., Hsu, Y., & Lai, C. C. (1998). Forecasting S&P 500 stock index futures with a hybrid AI system. Decision Support Systems, 23(2), 161-174.
    Tsymbal, A. (2004). The problem of concept drift: definitions and related work. Computer Science Department, Trinity College Dublin, 106(2).
    Verma, A., Pedrosa, L., Korupolu, M., Oppenheimer, D., Tune, E., & Wilkes, J. (2015, April). Large-scale cluster management at Google with Borg. In Proceedings of the Tenth European Conference on Computer Systems (p. 18). ACM.
    Walczak, S. (2001). An empirical analysis of data requirements for financial forecasting with neural networks. Journal of management information systems, 17(4), 203-222.
    Widmer, G., & Kubat, M. (1996). Learning in the presence of concept drift and hidden contexts. Machine learning, 23(1), 69-101.
    Description: 碩士
    國立政治大學
    資訊管理學系
    104356020
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0104356020
    Data Type: thesis
    Appears in Collections:[資訊管理學系] 學位論文

    Files in This Item:

    File SizeFormat
    602001.pdf2055KbAdobe PDF243View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback