English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113656/144643 (79%)
Visitors : 51719272      Online Users : 624
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 理學院 > 心理學系 > 期刊論文 >  Item 140.119/111425
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/111425


    Title: Efficiently and Effectively Mining Time-Constrained Sequential Patterns of Smartphone Application Usage
    Authors: Hsu, Kuo-Wei
    徐國偉
    Contributors: 資訊科學系
    Keywords: Data mining;Signal encoding;Technology transfer;Application developers;Daily lives;Mobile communication and computing;Pattern mining algorithms;Sequential patterns;Sequential-pattern mining;Smart-phone applications;Time interval;Smartphones
    Date: 2017
    Issue Date: 2017-07-27 12:52:18 (UTC+8)
    Abstract: Today, we have the freedom to install and use all kinds of applications on smartphones, thanks to the development of mobile communication and computing technologies. Undoubtedly, the system and application developers are eager to know how we use the applications on our smartphones in our daily life and so are the researchers. In this paper, we present our work on developing a pattern mining algorithm and applying it to smartphone application usage log collected from tens of smartphone users for several years. Our goal is to mine the sequential patterns each of which presents a series of application uses and satisfies a constraint on the maximum time interval between two application uses. However, we cannot mine such patterns by general algorithms and will miss some patterns by using the widely used implementation of the advanced algorithm specifically designed for time-constrained sequential pattern mining. We not only present an algorithm that can efficiently and effectively mine the patterns in which we are interested but also discuss and visualize the mined patterns. Our work could potentially support the related studies. © 2017 Kuo-Wei Hsu.
    Relation: Mobile Information Systems, Volume 2017 (2017), Article ID 3689309, 18 pages
    Data Type: article
    DOI 連結: http://dx.doi.org/10.1155/2017/3689309
    DOI: 10.1155/2017/3689309
    Appears in Collections:[心理學系] 期刊論文

    Files in This Item:

    File Description SizeFormat
    3689309.pdf3032KbAdobe PDF2439View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback