English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 114105/145137 (79%)
Visitors : 52188670      Online Users : 521
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 理學院 > 應用數學系 > 學位論文 >  Item 140.119/110693
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/110693


    Title: 模糊數據的局部加權回歸
    Locally weighted regression of fuzzy data
    Authors: 陳帥
    Contributors: 吳柏林
    陳帥
    Keywords: 模糊理論
    模糊回歸分析
    局部加權
    Fuzzy theory
    Fuzzy regression
    Locally weighted method
    Date: 2017
    Issue Date: 2017-07-03 14:41:05 (UTC+8)
    Abstract: 目標:本文旨在建構一種新型的模糊回歸模式,解決一类較複雜的模糊回歸問題。
    研究方法:推廣局部加權回歸的思想,先從理論上構建新模型;然後借由模拟數據,從多個方面考察新模型的性質,并和其他模型做比較。
    發現:局部加權回歸方法結合模糊隸屬度概念,使模糊回歸理論有更多的應用場合。
    原創性:目前在模糊回歸領域的主流思想是通過線性規劃等方法來構建模型,而本文另闢蹊徑,首次從局部加權的角度構建了模糊回歸的新模型。
    Objective: This paper aims to construct a new fuzzy regression model to solve a more complex fuzzy regression problem.
    Method: Build a new model by promoting the idea of locally weighted regression; Using simulated data to compare the new model with other models.
    Conclusion: The fuzzy membership degree concept combined with the locally weighted regression method makes the fuzzy regression theory have more applications.
    Originality: At present, the main idea in the field of fuzzy regression is to construct models by means of linear programming. In this paper, a new model of fuzzy regression is constructed from the perspective of locally weighted method for the first time.
    Reference: [1] L.A. Zadeh, Fuzzy sets, Information and Control, Volume 8, Issue 3, June 1965, pp.338–353
    [2] H. Tanaka, S. Uejima, K. Asai,Linear regression analysis with fuzzy model, IEEE Trans. Sys., Man. Cyber., 12 (1982), pp. 903–907.
    [5] William S. Cleveland, Robust Locally Weighted Regression and Smoothing Scatterplots, Journal of the American Statistical Association, Vol. 74,No. 368.(Dec., 1979),pp. 829-836.
    [6]Phil Diamond, Fuzzy Least Squares, Information Sciences 46(3), 1988, pp.141
    -157
    [7] Pierpaolo D`Urso, Linear regression analysis for fuzzy/crisp input and fuzzy/crisp output data ,Computational Statistics & Data Analysis, Volume 42, Issues 1–2, (2003), pp.47–72.
    [8] P. Anand Raj, D. Nagesh Kumar, Ranking alternatives with fuzzy weights using maximizing set and minimizing set ,Fuzzy Sets and Systems,1999,pp365-375
    [3]吳柏林,模糊統計導論第二版(2015),五南出版社(台北),p153.
    [4]陳孝煒、吳柏林,區間回歸與模糊樣本分析,管理科學與統計決策, 4(1), 2007
    Description: 碩士
    國立政治大學
    應用數學系
    104751018
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0104751018
    Data Type: thesis
    Appears in Collections:[應用數學系] 學位論文

    Files in This Item:

    File Description SizeFormat
    101801.pdf1363KbAdobe PDF2341View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback