|
English
|
正體中文
|
简体中文
|
Post-Print筆數 : 27 |
Items with full text/Total items : 113656/144643 (79%)
Visitors : 51717157
Online Users : 588
|
|
|
Loading...
|
Please use this identifier to cite or link to this item:
https://nccur.lib.nccu.edu.tw/handle/140.119/110591
|
Title: | Predicting Investor Funding Behavior using Crunchbase Social Network Features |
Authors: | 苑守慈 Liang, Yuxian Eugene;Yuan, Soe-Tsyr Daphne |
Contributors: | 資管系 |
Keywords: | Social network analysis, CrunchBase, Investor funding behavior, Link prediction |
Date: | 2016 |
Issue Date: | 2017-06-29 10:05:03 (UTC+8) |
Abstract: | Purpose– What makes investors tick? Largely counter-intuitive compared to the findings of most past research, this study explores the possibility that funding investors invest in companies based on social relationships, which could be positive or negative, similar or dissimilar. The purpose of this paper is to build a social network graph using data from CrunchBase, the largest public database with profiles about companies. The authors combine social network analysis with the study of investing behavior in order to explore how similarity between investors and companies affects investing behavior through social network analysis. Design/methodology/approach– This study crawls and analyzes data from CrunchBase and builds a social network graph which includes people, companies, social links and funding investment links. The problem is then formalized as a link (or relationship) prediction task in a social network to model and predict (across various machine learning methods and evaluation metrics) whether an investor will create a link to a company in the social network. Various link prediction techniques such as common neighbors, shortest path, Jaccard Coefficient and others are integrated to provide a holistic view of a social network and provide useful insights as to how a pair of nodes may be related (i.e., whether the investor will invest in the particular company at a time) within the social network. Findings– This study finds that funding investors are more likely to invest in a particular company if they have a stronger social relationship in terms of closeness, be it direct or indirect. At the same time, if investors and companies share too many common neighbors, investors are less likely to invest in such companies. Originality/value– The author’s study is among the first to use data from the largest public company profile database of CrunchBase as a social network for research purposes. The author ` s also identify certain social relationship factors that can help prescribe the investor funding behavior. Authors prediction strategy based on these factors and modeling it as a link prediction problem generally works well across the most prominent learning algorithms and perform well in terms of aggregate performance as well as individual industries. In other words, this study would like to encourage companies to focus on social relationship factors in addition to other factors when seeking external funding investments. |
Relation: | Internet Research, 26(1), 74-100 |
Data Type: | article |
DOI 連結: | http://dx.doi.org/10.1108/IntR-09-2014-0231 |
DOI: | 10.1108/IntR-09-2014-0231 |
Appears in Collections: | [資訊管理學系] 期刊論文
|
Files in This Item:
File |
Description |
Size | Format | |
74-100.pdf | | 1030Kb | Adobe PDF2 | 368 | View/Open |
|
All items in 政大典藏 are protected by copyright, with all rights reserved.
|
著作權政策宣告 Copyright Announcement1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.
2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(
nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(
nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.