English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113656/144643 (79%)
Visitors : 51718570      Online Users : 603
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/109686


    Title: 關於區域影像特徵描述子的建構框架
    Authors: 廖文宏
    Contributors: 資科系
    Keywords: 影像特徵描述子;點群排序關係;影像比對
    feature descriptor;local intensity order relations;image recognition
    Date: 2016
    Issue Date: 2017-05-17 15:26:04 (UTC+8)
    Abstract: 隨著科技的進步以及網際網路的普及,影像資訊的傳遞已經漸漸取代文字的表達,人們對於影像的需求也越來越多元,使得影像處理技術以及影像資訊分析也就越來越重要。然而,影像中其中一項重要的資訊為特徵描述子,強而有力的描述子能使得影像在辨識、分類等應用上有較佳的回饋,描述子的建構方式根據編碼原則分為:基於區域梯度統計、基於點對關係以及基於點群關係。其中,基於點群關係的編碼方式因為點群的選取及排序過程中,可能會產生過多的關係表示方法數,以至於不利於計算,因此過去較少有利用點群關係的編碼方式所建構而成的特徵描述子。本研究提出描述子建構方式-LIOR,是以點群排序關係為基礎的編碼方式,相較於LIOP方法隨著點群內的點數增加,元素關係數大幅度的成長,造成描述子維度過大,計算時間和空間皆可能需要大量的消耗,而本研究方法足以改善計算維度的問題,重新定義點群關係的排名機制,並以像素值為基準加入權重分配,以區別加權排序之間不同大小差值所造成的影響程度。實驗結果顯示本研究方法對於不同影像劣化效果的資料集,不僅能提升選取多點為一群的影像比對評估效能,同時也能改善點群內元素關係過多的排名表示法,降低以多點為群集的特徵描述子維度,節省了影像比對的計算時間以及空間,仍可維持整體影像配對之效能。
    With the advances of imaging technology and the popularity of mobile Internet, images have played an increasingly important role in interpersonal communication. As such, algorithms for automatic classification and recognition of images are being actively pursued by many researchers in the area of computer vision. Robust image features are essential in building effective image recognition engines. These features can be constructed according to various principles, such the distribution of local gradients (Histogram of Oriented Gradients, HOG), the relationship
    between two pixels (Local Binary Descriptors, LBD), or local intensity order statistics (Local Intensity Order Patterns, LIOP). Because the feature dimension grows quickly as we consider the ordering relations of a group of N (N>2) pixels, few researchers have exploited local order
    statistics among a pixel set to define an image feature. In this research, we propose a novel approach to construct a feature descriptor using local intensity order relations (LIOR) in a pixel group. In contrast to LIOP where the feature dimension increases drastically with the number of
    elements in a set, the size of LIOR is manageable. Moreover, LIOR ensures the stability of ordering by
    encoding the intensity differences as weights. Two different strategies for assigning the weights have been devised and tested. Experimental results indicate that the proposed methods yield better or comparable performance for different types of image degradation when compared to the original LIOP. Additionally, the storage requirement is significantly lower when the number of pixels in a group increases.
    Relation: MOST 104-2221-E-004-009
    Data Type: report
    Appears in Collections:[資訊科學系] 國科會研究計畫

    Files in This Item:

    File Description SizeFormat
    104-2221-E-004-009.pdf3065KbAdobe PDF2470View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback