English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113648/144635 (79%)
Visitors : 51676747      Online Users : 662
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 商學院 > 資訊管理學系 > 學位論文 >  Item 140.119/101077
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/101077


    Title: 巨量資料分析之虛擬矩陣設計
    Designing of Virtual Matrix of Big Data Analysis
    Authors: 黃日佳
    Contributors: 劉文卿
    張景堯

    黃日佳
    Keywords: 巨量資料
    記憶體不足
    虛擬矩陣
    矩陣運算
    R語言
    Date: 2016
    Issue Date: 2016-09-01 23:45:58 (UTC+8)
    Abstract: 本研究為解決在巨量資料分析下所產生之主記憶體不足之問題,設計虛擬矩 陣架構,透過虛擬矩陣架構提供快速、高效能的矩陣操作及運算,並降低巨量資 料在運算時所佔據之主記憶體容量。並結合 R 語言,提供 R 語言巨量資料分析、 高速矩陣運算之能力。
    Reference: 1. 林思吟. (2006). 「中國上市公司財務危機預警模型研究」 政治大學金融研究所學位論文, 1-51.
    2. 西內啟著, 陳亦苓譯(2016)「統計學,最強的商業武器 從買樂透到大數據,全都離不開統計學;不懂統計學,你就等著被騙吧!」悅知文化出版社.
    3. Adler, D., Nenadic, O., Zucchini, W.& Glaser, C. (2008). The ff Package: Handling Large Data Sets in R with Memory Mapped Pages of Binary Flat Files.
    4. Anton, H. (2010). Elementary linear algebra. John Wiley & Sons
    5. Asymptotix (2011). Integrating RevoDeployR from Revolution through RESTful API or XML-RPC with .NET or Drupal. Retrieved from http://www.asymptotix.eu/news/integrating-revodeployr-revolution-through-restful-api-or-xml-rpc-net-or-drupal
    6. Beyer, M. A.& Laney, D. (2012). The Importance of ‘Big Data’: A Definition. Stamford, CT: Gartner, 2014-2018.
    7. Bivand, R. S. (2000). Using the R statistical data analysis language on GRASS 5.0 GIS database files. Computers & Geosciences, 26(9), 1043-1052.
    8. Boyland, J. T. (2005, July). Handling Out of Memory Errors. In ECOOP 2005 Workshop on Exception Handling in Object-Oriented Systems.
    9. Cai, X., Nie, F., & Huang, H. (2013, August). Multi-View K-Means Clustering on Big Data. In IJCAI.
    10. Constantine A. C., Tim P. (2013). High-Volume Data Collection and Real Time Analytics Using Redis. Retrieved from http://conferences.oreilly.com/strata/strata2013/public/schedule/detail/27350
    11. Cribari-Neto, F., & Zarkos, S. G. (1999). R: Yet another econometric programming environment. Journal of Applied Econometrics, 14(3), 319-329.
    12. Debasis, S. (2009). Classic Data Structures 2Nd Ed. PHI Learning Pvt. Ltd..
    13. Derksen, S. & Keselman, H. J. (1992). Backward, Forward and Stepwise Automated Subset Selection Algorithms: Frequency of Obtaining Authentic and Noise Variables. British Journal of Mathematical and Statistical Psychology, 45(2), 265-282.
    14. Golub, G. H., & Van Loan, C. F. (2012). Matrix computations (Vol. 3). JHU Press.
    15. Han, J., Haihong, E., Le, G. & Du, J. (2011, October). Survey on NoSQL Database. In Pervasive Computing and Applications (ICPCA), 2011 6th International Conference on IEEE,363-366.
    16. IBM (2015). The Four V`s of Big Data. Retrieved from http://www.ibmbigdatahub.com/infographic/four-vs-big-data
    17. Ihaka, R.& Gentleman, R. (1996). R: a Language for Data Analysis and Graphics. Journal of Computational and Graphical Statistics, 5(3), 299-314.
    18. Laney, D. (2001). 3D Data Management: Controlling Data Volume, Velocity and Variety. META Group Research Note, 6, 70.
    19. Matloff, N. (2008). R for Programmers. University of California.
    20. Ordonez, C., Zhang, Y., & Cabrera, W. (2016). The Gamma matrix to summarize dense and sparse data sets for big data analytics. IEEE Transactions on Knowledge and Data Engineering, 28(7), 1905-1918.
    21. Rabl, T., Gómez-Villamor, S., Sadoghi, M., Muntés-Mulero, V., Jacobsen, H. A.& Mankovskii, S. (2012). Solving Big Data Challenges for Enterprise Application Performance Management. Proceedings of the VLDB Endowment, 5(12), 1724-1735.
    22. Scott, J. A. (2015). Getting Started with Apache Spark. MapR Technologies.
    23. Team, R. C. (2000). R Language Definition. Vienna, Austria: R Foundation for Statistical Computing.
    24. Venables, W. N.& Smith, D. M. (2009). An Introduction to R. Network Theory Limited.
    25. Zaharia, M., Chowdhury, M., Das, T., Dave, A., Ma, J., Mccauley, M.& Stoica, I. (2012). Fast and Interactive Analytics Over Hadoop Data with Spark. USENIX Login,37(4),45-51.
    26. Zaharia, M., Chowdhury, M., Das, T., Dave, A., Ma, J., McCauley, M.& Stoica, I. (2012, April). Resilient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster Computing. In Proceedings of The 9th USENIX Conference on Networked Systems Design and Implementation, USENIX Association,2-2.
    Description: 碩士
    國立政治大學
    資訊管理學系
    102356042
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0102356042
    Data Type: thesis
    Appears in Collections:[資訊管理學系] 學位論文

    Files in This Item:

    File SizeFormat
    index.html0KbHTML2318View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback