政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/99747
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  全文筆數/總筆數 : 113318/144297 (79%)
造訪人次 : 51105235      線上人數 : 925
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: https://nccur.lib.nccu.edu.tw/handle/140.119/99747


    題名: 負利率下金融創新-遞延領息選擇權
    Financial Innovation under Negative Rate Environment-Coupon Postponing Option
    作者: 陳柏鋼
    Chen, Bo Gang
    貢獻者: 胡聯國
    Hu, Len Kuo
    陳柏鋼
    Chen, Bo Gang
    關鍵詞: 負利率
    債券
    隨機過程
    日期: 2016
    上傳時間: 2016-08-09 09:58:14 (UTC+8)
    摘要: 本文探討銀行將負利率轉嫁予投資機構、企業、高淨值自然人等鉅額存款戶承擔時,該類存款人對於減持現金和存款部位,或者延後現金流入之需求。此外,為滿足此種需求,本文嘗試設計一種當市場利率由正值出發,初次達到0%時,固定配息債券投資人能選擇將原債券依約定比率轉換為零息債券,也就是一個延後現金收入的選擇權,讓可能被銀行轉嫁的高額存戶,能夠減輕被轉嫁的負擔,除降低了未來被轉嫁的不確定性,也使該投資人能夠保有資金管理的彈性。在利率模型方面,本文採用Ornstein-Uhlenbeck(O-U)利率過程,假設債券發行時市場利率為正,然而平均利率為0%,透過利率期限結構設計出契約轉換張數,並結合初次到達時間(first hitting time)之機率密度函數求解遞延領息選擇權的價值。利用蒙地卡羅積分法,發現均值回歸力道θ與選擇權價格呈現反向關係;票息多寡和權利價值呈正向關係;選擇權價值隨著變異數變大而先升後降;執行利率μ(本文以利率均值μ作為執行利率)越低,權利價值越高,代表市場利率平均值越低,遞延領息選擇權提供的保障越有價值,選擇權價格越高;也可以解讀為,當景氣越不好利率平均值越低時,被轉嫁負利率者會越願意持有該選擇權來保護自己。
    參考文獻: Alili, L., Patie, P., & Pedersen, J. L. (2005). Representations of the first hitting time density of an Ornstein-Uhlenbeck process 1. Stochastic Models, 21(4), 967-980.

    Björk, T. (2009). Arbitrage theory in continuous time. Oxford university press.

    Buiter, W. H., & Panigirtzoglou, N. (1999). Liquidity traps: how to avoid them and how to escape them (No. w7245). National bureau of economic research.


    Fukao, M. (2005). The effects of ‘Gesell’(Currency) taxes in promoting Japan`s economic recovery. International Economics and Economic Policy, 2(2-3), 173-188

    Gesell, S. (1958). The natural economic order. Owen.

    Goodfriend, M. (2000). Overcoming the zero bound on interest rate policy. Journal of Money, Credit and Banking, 1007-1035.


    Linetsky, V. (2004). Computing hitting time densities for CIR and OU diffusions: Applications to mean-reverting models. Journal of Computational Finance, 7, 1-22.


    Lo, C. F., & Hui, C. H. (2006). Computing the first passage time density of a time-dependent Ornstein–Uhlenbeck process to a moving boundary. Applied mathematics letters, 19(12), 1399-1405.

    McAndrews, J. (2015). Negative nominal central bank policy rates: where is the lower bound? (No. 168). Federal Reserve Bank of New York.

    Rognlie, M. (2015). What lower bound? monetary policy with negative interest rates. Unpublished manuscript, Department of Economics, Harvard University (November 23).

    Shreve, S. E. (2004). Stochastic calculus for finance II: Continuous-time models (Vol. 11). Springer Science & Business Media.
    描述: 碩士
    國立政治大學
    國際經營與貿易學系
    103351025
    資料來源: http://thesis.lib.nccu.edu.tw/record/#G0103351025
    資料類型: thesis
    顯示於類別:[國際經營與貿易學系 ] 學位論文

    文件中的檔案:

    檔案 大小格式瀏覽次數
    102501.pdf1053KbAdobe PDF272檢視/開啟


    在政大典藏中所有的資料項目都受到原著作權保護.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋