Loading...
|
Please use this identifier to cite or link to this item:
https://nccur.lib.nccu.edu.tw/handle/140.119/99556
|
Title: | 資產報酬型態與交易對手風險對衍生性商品評價之影響 The Impact of Stylized Facts of Asset Return and Counterparty Risk on Derivative Pricing |
Authors: | 陳俊洪 |
Contributors: | 廖四郎 陳俊洪 |
Keywords: | Lévy 過程 Esscher 轉換 巨災權益賣權 交易對手信用風險 Lévy process Esscher transform Markov-modulated Counterparty risk |
Date: | 2016 |
Issue Date: | 2016-08-02 17:03:48 (UTC+8) |
Abstract: | 過去實證研究發現,資產的動態過程存在不連續的跳躍與大波動伴隨大波動的波動度叢聚現象而造成資產報酬分配呈現出厚尾與高狹峰的情況,然而,此現象並不能完全被傳統所使用幾何布朗運動模型與跳躍擴散模型給解釋。因此,本文設定資產模型服從Lévy 過程中Generalized Hyperbolic (GH)的normal inverse Gaussian(NIG) 和 variance gamma (VG)兩個模型,然而,Lévy 過程是一個跳躍過程,是屬於一個不完備的市場,這將使得平賭測度並非唯一,因此,本文將採用Gerber 和 Shiu (1994)所提的Esscher 轉換來求得平賭測度。關於美式選擇權將採用LongStaff and Schwartz (2001)所提的最小平方蒙地卡羅模擬法來評價美式選擇權。實證結果發現VG有較好的評價績效,此外,進一步探討流動性與價內外的情況對於評價誤差的影響,亦發現部分流動性高的樣本就較小的評價誤差;此外,價外的選擇權其評價誤差最大。另一方面從交易的觀點來看,次貸風暴後交易對手信用風險愈來愈受到重視,此外,近年來由於巨災事件的頻傳,使得傳統保險公司風險移轉的方式,漸漸透過資本市場發行衍生性商品來進行籌資,以彌補其在巨災發生時所承擔的損失。因此,透過發行衍生性商品來進行籌資,必須考量交易對手的信用風險,否則交易對手違約,就無法獲得額外的資金挹注,因此,本文評價巨災權益賣權,並考量交易對手信用風險對於其價格的影響。 In the traditional models such as geometric Brownian motion model or the Merton jump diffusion model can’t fully depict the distributions of return for financial securities and the those return always have heavy tail and leptokurtic phenomena due to the price jump or volatilities of return changing over time. Hence, the first article uses two time-changed Lévy models: (1) normal inverse Gaussian model and (2) variance gamma model to capture the dynamics of asset for pricing American option. In order to deal with the early-exercised problem of the American option, we use the LSM to determine the optimal striking point until maturity. In the empirical analyses, we can find the VG model have better performance than the other three models in some cases. In addition, with the comparison the pricing performance under different liquidity and moneyness conditions, we also find in some samples increasing the liquidity really can reduce the pricing errors, at the same time, the maximum pricing errors appears in the OTM samples in all cases. The global subprime crisis during 2008 and 2009 arouses much more attention of the counterparty risk and the number of default varies with economic condition. Hence, we investigate the counterparty risk impact on the price of the catastrophe equity put with a Markov-modulated default intensity model in the second study. At the same time, we also extend the stochastic interest rate setting in Jaimungal and Wang (2006) and relax some restrictive assumption of Black-Scholes model by taking the regime-switching effects of the economic status, then use the Markov-modulated processes to model the dynamics of the underlying asset and interest rate. In the numerical analyses, we illustrate the impact of the recovery rate, time to maturity, jump intensity of the equity and default intensity of counterparty on the CatEPut price. |
Reference: | Amin, K. I. (1993). Jump diffusion option valuation in discrete time. The Journal of Finance, 48(5), 1833-1863. Ammann, M. (2013). Credit risk valuation: methods, models, and applications. Springer Science & Business Media. Black, F., & Scholes, M. (1973). The pricing of options and corporate liabilities. The Journal of Political Economy, 637-654. Barndorff-Nielsen, O., & Halgreen, C. (1977). Infinite divisibility of the hyperbolic and generalized inverse Gaussian distributions. Probability Theory and Related Fields, 38(4), 309-311. Barndorff-Nielsen, O. E. (1995). Normal inverse Gaussian processes and the modeling of stock returns.” Research Report 300, Dept. Theoretical Statistics, Aarhus University. Barndorff-Nielsen, O. E. (1997). Processes of normal inverse Gaussian type. Finance and stochastics, 2(1), 41-68. Barndorff-Nielsen, O. E. (2001). Superposition of Ornstein--Uhlenbeck type processes. Theory of Probability & Its Applications, 45(2), 175-194. Barndorff‐Nielsen, O. E., & Shephard, N. (2001). Non‐Gaussian Ornstein–Uhlenbeck‐based models and some of their uses in financial economics. Journal of the Royal Statistical Society: Series B (Statistical Methodology),63(2), 167-241. Barndorff-Nielsen, O. E., Nicolato, E., & Shephard, N. (2002). Some recent developments in stochastic volatility modelling. Quantitative Finance, 2(1), 11-23. Carriere, J. F. (1996). Valuation of the early-exercise price for options using simulations and nonparametric regression. Insurance: Mathematics and Economics, 19(1), 19-30. Carr, P., Geman, H., Madan, D. B., & Yor, M. (2002). The fine structure of asset returns: An empirical investigation. The Journal of Business, 75(2), 305-333. Carr, P., Geman, H., Madan, D. B., & Yor, M. (2003). Stochastic volatility for Lévy processes. Mathematical Finance, 13(3), 345-382. Chang, C. C., Lin, S. K., & Yu, M. T. (2011). Valuation of catastrophe equity puts with Markov‐modulated Poisson processes. Journal of Risk and Insurance, 78(2), 447-473. Chen, M. H., Gau, Y. F., & Tai, V. W. (2013). Issuer credit ratings and warrant-pricing errors. Emerging Markets Finance and Trade, 49(sup3), 35-46. Ribeiro, C., & Webber, N. (2003). A Monte Carlo method for the normal inverse Gaussian option valuation model using an inverse Gaussian bridge. Preprint, City University. Cox, S. H., Fairchild, J. R., & Pedersen, H. W. (2004). Valuation of structured risk management products. Insurance: Mathematics and Economics, 34(2), 259-272. Duffie, D., & Singleton, K. J. (1999). Modeling term structures of defaultable bonds. Review of Financial studies, 12(4), 687-720. Eberlein, E. and A. Papapantoleon. (2005). Symmetries and pricing of exotic options in Lévy models. Exotic option pricing and advanced Lévy models, pp.99-128. Elliott, R. J., Chan, L., Siu, T. K., (2005). Option pricing and Esscher transform under regime switching. Annals of Finance 1, 423–432. Garvin, J. (2000), Extreme value theory- an empirical analysis of equity risk. Quantitative Risk: Model and Statistics, UBS Warburg. Gerber, H. U., Shiu, E. S. W. (1994). Option pricing by Esscher transforms. Transactions of Society of Actuaries, 46, pp. 99–140. Heston, S. L. (1993). A closed-form solution for options with stochastic volatility with applications to bond and currency options. Review of Financial Studies, 6(2), 327-343. Jaimungal, S., & Wang, T. (2006). Catastrophe options with stochastic interest rates and compound Poisson losses. Insurance: Mathematics and Economics, 38(3), 469-483. Jarrow, R. A., & Turnbull, S. M. (1995). Pricing derivatives on financial securities subject to credit risk. The Journal of Finance, 50(1), 53-85. Jarrow, R. A., & Yu, F. (2001). Counterparty risk and the pricing of defaultable securities. The Journal of Finance, 56(5), 1765-1799. Kim, S. (2009). The performance of traders` rules in options market. Journal of Futures Markets, 29, No.11, pp. 999-1020. Klein, P. (1996). Pricing Black-Scholes options with correlated credit risk. Journal of Banking & Finance, 20(7), 1211-1229. Klein, P., & Inglis, M. (2001). Pricing vulnerable European options when the option’s payoff can increase the risk of financial distress. Journal of Banking & Finance, 25(5), 993-1012. Kou, S. G. (2002). A jump-diffusion model for option pricing. Management Science, 48, No.8, pp.1086-1101. Lando, D. (1998). On Cox processes and credit risky securities. Review of Derivatives Research, 2(2-3), 99-120. Lin, S. K., Chang, C. C., & Powers, M. R. (2009). The valuation of contingent capital with catastrophe risks. Insurance: Mathematics and Economics, 45(1), 65-73. Longstaff, F. A., & Schwartz, E. S. (2001). Valuing American options by simulation: a simple least-squares approach. Review of Financial Studies,14(1), 113-147. Madan, D. B., Carr, P. P., & Chang, E. C. (1998). The variance gamma process and option pricing. European Finance Review, 2(1), 79-105. Madan, D. B., & Seneta, E. (1990). The variance gamma (VG) model for share market returns. Journal of Business, 511-524. Mandelbrot, B. (1963). The variation of certain speculative prices.” Journal of Business, 45(4),542-543. Ammann, M., Kind, A., & Wilde, C. (2008). Simulation-based pricing of convertible bonds. Journal of Empirical Finance, 15(2), 310-331. Merton, R. C. (1974). On the pricing of corporate debt: The risk structure of interest rates. The Journal of finance, 29(2), 449-470. Merton, R. C. (1976). Option pricing when underlying stock returns are discontinuous. Journal of Financial Economics, 3(1-2), 125-144. Samuelson, P. A. (1965). Proof that properly anticipated prices fluctuate randomly. IMR; Industrial Management Review (pre-1986), 6(2), 41. Schoutens, W. (2003). Lévy Process in Finance: Pricing Financial Derivatives. Belgium: John Wiley and Sons. Stentoft, L. (2008). American option pricing using GARCH models and the normal inverse Gaussian distribution. Journal of Financial Econometrics, 6(4), 540-582. Tilley, J. A. (1993). Valuing American options in a path simulation model. Transactions of the Society of Actuaries, 45(83), 104. |
Description: | 博士 國立政治大學 金融學系 98352503 |
Source URI: | http://thesis.lib.nccu.edu.tw/record/#G0098352503 |
Data Type: | thesis |
Appears in Collections: | [金融學系] 學位論文
|
Files in This Item:
File |
Size | Format | |
250301.pdf | 1254Kb | Adobe PDF2 | 70 | View/Open |
|
All items in 政大典藏 are protected by copyright, with all rights reserved.
|