Reference: | Bar-Hen, A. and Daudin, J. J. (1995). Generalization of the Mahalanobis Distance in
The Mixed Case. Journal of Multivariate Analysis, 53, 332-342
Bedrick, E. J., Lapidus, J. and Powell, J. F. (2000). Estimating the Mahalanobis Dista-
Nce from Mixed Continuous and Discrete Data. Biometric 56, 394-401.
Byar, D. P., Green S. B. (1980). The choice of treatment for patients based on covari-
ate information: application to prostate cancer. Bull du Cancer 67,477-490
Dempster, A. P., Laird, M., Rubin, D. B. (1977). Maximum likelihood from incompl-
Ete data via the EM algorithm. J. Roy. Statist. Soc. Ser. B 39, 1-38
De Maesschalck, R., Jouan-Rimbaud, D. and Massart, D. L. (2000). The Mahalanobis
Distance, Chemometrics and Intelligent Laboratory Systems 50, 1-18
Hunt L. and Jorgensen M. (1999). Mixture model clustering using the multimix progr-
am. Australia and New Zealand Journal of Statistics 41,153-171
Schafer J. L. (1977). Analysis of Incomplete Multivariate Data, CHAPMAN and HA-
LL
Kullback, S. (1959). Information Theory and Statistical. New-York: Dover.
Krzanowski, W. J. (1983). Distance between population using mixed continuous and
categorical variable. Biometrika 70, 235-243
Kenne Pagiui, E. C. and Canale, A. (2014). Pairwise likelihood inference for multiva-
Riate categorical responses. Technical Report, Department of Statistics, Univers-
ity of Padua
Little, R. J. A. and Rubin, D. B. (1989). The analysis of social science data with miss-
ing values. Sociological Methods and Research, 18, pp. 292-326
Many, B. F. J. (1994). Multivariate Statistical Method: A Prime, 2nd edition. New Yo-
rk : Chapman amd Hall.
Mahalanobis, P. C.(1936). On the generalized distance in statistics, Proceedings of
the National Institute of Science India, 2, 49–55.
McParland,D.and Gormley,I.C. (2014). Model base clustering for mixed data:cluster-
MD.Technical,University College Dublin.
Olkin, I. and Tate, R. F. (1961). Multivariate correlation models with mixed discrete
and continuous variables. Annals of Mathematical Statistics 32,448-465
Poon, W. Y. and Lee, S. Y. (1987). Maximum likelihood estimation of multivariate
polychoric correlation coefficients. Psychometrika 52, 409-430.
Rao, C. R (1973). Linear Statistic Inference and Its Applications, 2nd edition. New
York :Wiley.
Rubin, D. B. (1976). Inference and missing data. Biometrika 63, 581-592
Rubin, D. B. (1987). Multiple Imputations for Nonresponse in Surveys. Wiley, New
York
Searle, S. R., Casella, G., and McCulloch, C. E. (1992). Variance Components. New
York: Wiley.
Scafer,J.L(1999). Multiple imputation: a primer. Statiscal methods in medical resear-
ch, 8(1), 3-15 |