政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/98771
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113325/144300 (79%)
Visitors : 51182464      Online Users : 927
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/98771


    Title: 判定預測市場之準確度:單一與合併鑑別模型之比較
    Other Titles: Assessing the Accuracy of Prediction Markets: Single versus Combined Identification Models
    Authors: 戴中擎;池秉聰;林鴻文;童振源
    Contributors: 國發所
    Keywords: 預測市場;事前鑑別;合併預測;邏輯迴歸;主成份分析;判別分析;決策樹;支持向量機
    Prediction markets;Identification in advance;Combined forecast;Logistic regressions;Principal component analysis;Discriminant analysis;Decision trees;Support vector machine
    Date: 2015-10
    Issue Date: 2016-07-07 16:03:28 (UTC+8)
    Abstract: 預測市場是近年來新發展出的預測方法,許多實證研究均證明預測市場能有效整合資訊並提出準確的預測。然而在大多數預測市場研究中,研究者只能由過去的歷史準確率來衡量市場預測的可靠性,無法針對單一市場合約預測的正確與否進行事前的評估。本文提出一個植基於市場交易特徵的合併鑑別方法,藉由整合迴歸模型、多變量分析、決策樹、及支持向量機等四種模型來擷取與市場預測準確率有關的潛在資訊。本文使用未來事件交易所自 2006 年至 2011年共 650 個選舉合約作為資料,經實證分析後驗證合併鑑別模型可以非常準確地於事前對任一合約預測的正確與否提出評斷。本文所提出的合併鑑別方法不但比單一鑑別模型更為可靠,而且可依決策者不同的目標函數提出不同的評斷以進行風險控管。
    As prediction markets (PM) being used widely in many fields, contemporary researchers and practitioners have to rely on historical accuracy to evaluate the plausibility of current events. Based on the empirical and theoretic findings on the accuracy of prediction markets, this paper proposes a combined identification method which can evaluate the accuracy of PM events in advance. The proposed method not only takes a variety of market features into account, but also combines the forecasts of different statistical and machine learning techniques to fully capture the patterns underneath. We test the proposed method with transaction data from 2006 to 2011. This study proves that it is possible to evaluate the accuracy of the any PM event in advance with high accuracy. We also show that the combined modeling is a superior method in the sense that it not only can provide higher identification accuracy, but is also flexible enough to incorporate decision makers’ goals and preferences into the identification process.
    Relation: 經濟論文叢刊,
    Data Type: article
    Appears in Collections:[Graduate Institute of Development Studies] Periodical Articles

    Files in This Item:

    File SizeFormat
    1-53.pdf837KbAdobe PDF2734View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback