政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/98727
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  全文筆數/總筆數 : 113324/144300 (79%)
造訪人次 : 51115816      線上人數 : 883
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: https://nccur.lib.nccu.edu.tw/handle/140.119/98727


    題名: Modern Robust Methods for Covariance in Structural Equation Modeling: ADF, SCALED, and Bootstrapping
    作者: 吳佩真
    關鍵詞: ADF;SCALED;bootstrapping;covariance structure
    日期: 2008-12
    上傳時間: 2016-07-07 11:40:28 (UTC+8)
    摘要: ML和GLS是結構方程模式分析最常使用的參數估計法,兩種方法是基於常態分配假設來進行估計,然而,真實資料卻時常違反常態性假設。在此情形下,基於這二種估計法所求得的參數是否可靠,值得商榷。本研究旨在比較不同非常態情形下,這二種方法與四種不受常態性假設影響的強韌統計方法第一類錯誤率控制情形。結果發現:ML與GLS在所有非常態模擬資料,即使樣本數高達5,000,二者的第一類錯誤率超過35%。而ADF容易受小樣本影響產生過高的第一類錯誤率。SCALED, bootstrap- o M 和bootstrap-A M 較不易受樣本數影響,且可降低非常態所造成的問題。最後,提出未來研究與實務的建議。
    Although the maximum likelihood estimator based on normality theory is default in most available programs in structural equation modeling, the majority of data investigated in behavioral and social sciences violate the assumption of multivariate normality. This study evaluated six covariance structure analysis techniques under various conditions of nonnormality. Results clearly illustrated that the ML and GLS failed to provide a good control of Type I error rates in all conditions of nonnormality even with the sample size of 5000. The ADF was essentially unusable in small to intermediated sample sizes. The SCALED and two bootstrap methods provided promising advantages but they were confined by small sample sizes. Additionally, the minimum requirements of sample sizes and bootstrapped samples for bootstrapping procedures were identified. Finally, a few suggestions were provided in the hope of improving the current practice.
    關聯: 教育與心理研究, 31(4), 1-22
    Journal of Education & Psychology
    資料類型: article
    顯示於類別:[教育與心理研究 TSSCI] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    31(4)-P1-22.pdf269KbAdobe PDF2287檢視/開啟


    在政大典藏中所有的資料項目都受到原著作權保護.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋