Loading...
|
Please use this identifier to cite or link to this item:
https://nccur.lib.nccu.edu.tw/handle/140.119/98634
|
Title: | 網路巨量時代下輿情意向之探究: 以我國自由經濟示範區政策為例 Exploring Internet Policy Opinion in the Era of Big Data : A Case Study of Free Economic Pilot Zones in Taiwan |
Authors: | 劉芃葦 Liu, Peng Wei |
Contributors: | 陳敦源 Chen, Don Yun 劉芃葦 Liu, Peng Wei |
Keywords: | 網路輿情分析 巨量資料 自由經濟示範區 情緒分析 立場分析 內容分析 Internet Public Opinion Analysis Big Data Free Economic Pilot Zones Sentiment analysis Policy position analysis Content analysis |
Date: | 2016 |
Issue Date: | 2016-07-01 15:21:49 (UTC+8) |
Abstract: | 隨著Web 2.0社群媒體服務的普及化,越來越多的民眾開始運用網際網路發表自身對於政府治理的需求與看法,大量的民意資訊在網絡的交互連結下,迅速集結成可觀的網路輿情。由於網路輿情具備巨量資料的特性,使得當前各政府部門熟悉的分析方法,似乎產生適用上的困難。因而網路輿情分析的出現,成為當前政府洞察民意的新興工具。更重要的是,如何運用網路輿情分析進一步與政策面產生實質的連結,如探究網路輿情分析當中情緒分析對於政策立場解讀的可能性,對公共管理者而言更為重要。再者,網路輿情分析目前尚缺乏一套檢測方法來驗證其分析結果的信效度。因此,本研究的目的在於,運用網路輿情分析所撈取的輿情資料,比較新聞網站、社群網站、討論區及部落格四類來源在情緒分析與立場分析之差異,最後運用情緒與立場來解讀網路輿情。 研究設計,本文採用次級資料分析法及內容分析法,次級資料來自2014年行政院國發會委託政治大學蕭乃沂教授所主持的「政府應用巨量資料精進公共服務與政策分析之可行性研究」,本文以「自由經濟示範區政策」作為個案分析。研究發現,在立場分析方面,新聞網站及部落格是支持立場的言論最多;而社群網站及討論區則是反對立場的言論最多。情緒分析方面,四類來源皆以負向情緒的言論為主,正向情緒的言論相對少;透過情緒與立場的交叉分析顯示,機器會產生兩類誤判情形,第一類誤判是被機器判讀是正向情緒,但人工判讀為反對立場的言論,以社群網站的來源居多;第二類誤判是被機器判讀是負向情緒,但人工判讀為支持立場的言論,以新聞網站的來源居多。 依此研究發現,本文建議未來實務者在應用網路輿情分析時,不能僅以整體網路輿情分析的結果輕斷,必要時應將不同網路言論來源個別觀察,特別是當負向情緒的輿論出現時,應優先留意社群網站的動向。此外,針對輿情的高峰期也可對照新聞網站的分析結果,了解是否受到特定新聞報導的牽動而引起網民的討論。值得注意的是,針對社群網站中正向情緒的輿論,實務者也不能過於樂觀,因為部份正向情緒的言論可能是帶有網民「拐彎抹角」的反對。 In the era of Web 2.0, more and more people express their opinions for public governance on the Internet. Massive public opinions are quickly generated. However, it seems difficult to analyze for government because of the feature of big data. Internet public opinion analysis(IPOA) has become new analytical methods for public managers. The purpose of this study is to use IPOA to mine large amounts of policy opinions and conduct sentiment analysis(SA) comparing with political positions analysis(PPA) in the news sites, forums, social networking sites and blogs. Finally, interpreting the network of public opinion by SA and PPA. Secondary data analysis and content analysis are applied. Secondary data collected by the Research, National Development council, the Executive Yuan. A Case Study of Free Economic Pilot Zones Policy is selected. In terms of PPA, the results reveal more supporting political opinions in the news sites and blogs. And more opposing political opinions in the social networking sites and forums. In terms of SA, four types of sources are negative emotions in large part. By cross-analysis, SA and PPA have difference on results. There will be two types of false judgments by SA with machine. One is judged positive emotion by machine, but opposing political opinions by coders, such as social networking sites. The other is judged negative emotion by machine, but supporting political opinions by coders, such as news sites. From this study, author suggests that practitioners should separately make the necessary observation of various networks rather than only determine on overall results as using IPOA. Especially, giving priority to the social networking sites when the opposing political opinions emerge. Moreover, the peak period for opposing political opinions in the social networking sites can be compared with the events in the news sites. It is noteworthy that practitioners should pay attention to the partial positive comments in social network sites with“irony”remarks. |
Reference: | 中文文獻 王石番(1992)。傳播內容分析法:理論與實證。台北:幼獅。 朱斌妤、黃東益、洪永泰、李仲彬、曾憲立(2015)。數位國家治理(2):國情追蹤與方法整合。國家發展委員會委託報告(編號:NDC-MIS-103-001),未出版。 余致力(2000)。民意與公共政策:表達方式的釐清與因果關係的探究。中國行政評論,9(4),81-110。 宋學文、陳鴻基(2000)。從全球化探討網際網路時代的政策管理。資訊管理學報,8(2),153-173。 李仲彬(2006)。電子化政府的公民使用行為:數位資訊能力與資訊素養之影響分析。資訊社會研究,11,177-218。 周芊、康力平(2014)。網路社會動員的新研究取徑:社群巨量資料分析,空大人文學報,23,29-45。 周韻采、陳俊明(2010)。政府重大議題網路輿論趨勢調查研究–以死刑為例。行政院研究發展考核委員會委託研究報告(編號:0992460052),未出版。 周韻采、陳俊明(2011)。網路輿論意向分析機制之建構與實證研究。行政院研究發展考核委員會委託研究報告(編號:RDEC-MIS-100-003),未出版。 林俊宏(譯)(2013)。大數據。臺北:天下文化。 林照真(2014)。社群網站與新聞生產:從聚合觀點檢視全球性媒體如何經營社群網站。中華傳播學會年會,嘉義。 林震岩(2006)。多變量分析-SPSS的操作與應用。臺北:智勝文化。 施伯燁(2014)。社群媒體—使用者研究之概念、方法與方法論初探。傳播研究與實踐,4(2),207-227。 莫季雍(2006)。民意調查與為民服務:精緻的年代需要創新的作為。研考雙月刊,30(4),28-38。 陳俊明、周韻采、廖益興(2015)。政府因應公民運用網路參與施政意見表達之研究。行政院研究發展考核委員會委託研究報告(編號:NDC-DDS-103-007),未出版。 陳敦源、黃東益、蕭乃沂(2004)。電子化參與:公共政策過程中的網路公民參與。研考雙月刊,28(4),37-51。 陳敦源、黃東益、李仲彬、林子倫、蕭乃沂(2008)。資訊通訊科技下的審議式民主:線上與實體公民會議比較分析。行政暨政策學報,46,49-106。 陳敦源、潘競恆(2011)。政府就是「我們」:Web 2.0時代民主治理的希望或夢幻? 研考雙月刊,35(4),23-34。 陳敦源(2012)。民主治理:公共行政與民主政治的制度性調和(第二版)。臺北市:五南圖書出版股份有限公司。 陳敦源、蕭乃沂、廖洲棚(2015)。邁向循證政府決策的關鍵變革:公部門巨量資料分析的理論與實務,國土及公共治理季刊,3(3),33-44。 陳敦源、蕭乃沂、廖洲棚、陳恭(2016)。政府巨量資料分析與政策端應用效能提升之研析。國家發展委員會(編號:NDC-104-035-003),未出版。 陳義彥、黃紀、洪永泰、盛杏湲、游清鑫、鄭夙芬等人(2013)。民意調查新論。臺北:五南。 黃東益、蕭乃沂、陳敦源(2003)。網際網路時代公民直接參與的機會與挑戰:台北市「市長電子信箱」的個案研究,東吳政治學報,17,121-151。 黃東益、陳敦源、蕭乃沂(2006)。政策民意調查:公共政策過程中的公共諮詢,研考雙月刊,30(4),13-27。 游美惠(2000)。內容分析、文本分析與論述分析在社會研究的運用。調查研究–方法與應用,8,5-42。 楊孝濚(1992)。社會及行為科學研究法。台北:台灣東華書局股份有限公司。 廖洲棚、魏國彥(2012)。從協力治理觀點剖析臺北市1999市民熱線的營運與管理。國家文官學院T&D飛訊,150,1-26。 廖洲棚、陳敦源、廖興中(2012)。回應性政府的最後一哩路:政府公民關係管理資料加值應用之研究。行政院研究發展考核委員會(編號:RDEC-RES-101002),未出版。 廖洲棚、陳敦源、廖興中(2013)。揭開地方文官回應民意的「秘箱」:臺灣六都 1999 熱線的質化分析。文官制度季刊, 5(1),49-84。 廖洲棚、陳敦源、蕭乃沂、廖興中(2013)。運用巨量資料實踐良善治理:網路民意導入政府決策分析之可行性研究。行政院研究發展考核委員會(編號:RDEC-MIS-102-003),未出版。 劉龍龍、葉乃嘉、何志宏、余孝先(2013)。各國政府之雲端發展策略與推動現況。公共治理季刊,1(3),22-34。 劉麗惠(2013)。巨量資料時代全面來臨:發展新商業模式掌握先機。貿易Trade Magzine,268,60-63。 熊澄宇(2005)。資訊社會4.0。台北:商周文化出版。 蕭元哲、葉上葆(2003)。電子化政府之使用者行為分析。電子商務研究,1(2),207-224。 蕭乃沂(2004)。公民關係管理與政策問題建構:以民意電子信箱為起點。國家政策季刊,3(1),155-174。 蕭乃沂、陳敦源、廖洲棚(2014)。政府應用巨量資料精進公共服務與政策分析之可行性研究。行政院研究發展考核委員會(編號:RDEC-MIS-103-003),未出版。 戴廷芳(2014)。政府擁抱大資料。iThome電腦報─e政府,8,91-95。 鐘慧真、梁世英(譯)(2013)。Big Data 大數據的獲利模式:圖解、案例、策略、實戰。臺北:經濟新潮社。 英文文獻 Aikins, S. K., & Krane, D. (2010). Are Public Officials Obstacles to Citizen-Centered E-Government? An Examination of Municipal Administrators` Motivations and Actions. State & Local Government Review, 42(2), 87-103. Berelson, B. (1952). Content Analysis In Communication Research, Glencoe, Ill.: The Free Press. Bertrand, K. Z., Bialik, M., Virdee, K., Gros, A., & Bar-Yam, Y. (2013). Sentiment in New York City: A High Resolution Spatial and Temporal View. arXiv preprint arXiv:1308.5010. Bifet, A. (2013). Mining Big Data in Real Time. Informatica, 37, 15-20. Borges, J., & Levene, M. (2000). Advances in Web Usage Analysis and User Profiling. Berlin: Springer. Boyd, D., & Crawford, K. (2012). Critical Questions for Big Data. Information, Comm Bourgon, J. (2009). Why should governments engage citizens in service delivery and policy making? In OECD (Ed.), Focus on citizens: Public engagement for better policy and services (pp. 199-205). OECD Publishing. unication & Society, 15(5), 662–679. Caverlee, J., Liu, L., & Buttler, D. (2004). Probe, Cluster, and Discover: Focused Extraction of QA-Pagelets From the Deep Web. Proceedings of IEEE International Conference on Data Engineering, 103-114. Chen, H., Chiang, R. H. L., & Storey, V. C. (2012). Business Intelligence and Analytics: From Big Data to Big Impact. MIS Quarterly, 36(4), 1-24. Decker, P. T. (2014), Presidential Address: False Choices, Policy Framing, and the Promise of “Big Data”. J. Pol. Anal. Manage, 33, 252–262. Desouza, K. (2014). Realizing the Promise of Big Data: Implementing Big Data Projects. IBM Center for the Business of Government. Dumbill, E. (2012). Big Data Now: 2012 Edition. Cambridge: O’Reilly Media. Eaton, C., Deroos, D., Deutsch, T., Lapis, G., & Zikopoulos, P. (2012). Understanding Big Data: Analytics for Enterprise Class Hadoop and Streaming Data. New York: McGraw-Hill Press. Edelstein, Alex S.(1988). Communication Perspectives in Public Opinion: Traditions and Innovations. Communication Yearbook, 11, 502-533. Erikson, R. S., & Tedin, K. L. (2015). American public opinion: Its origins, content and impact. New York: Routledge. Etzioni, O. (1996). The World Wide Web: Quagmire or Gold Mine. Communications of the ACM, 39, 65-68. Fan, W., & Bifet, A. (2012). Mining Big Data- Current Status, and Forecast to the Future. SIGKDD Explorations, 14(2), 1-5. Goffman E. (1974). Frame Analysis: an essay on the organization of the experience. N.Y.: Harper Colophon Groshek, J., & Al-Rawi, A. (2013). Public Sentiment and Critical Framing in Social Media Content During the 2012 US Presidential Campaign. Social Science Computer Review, 31(5), 563-576. Hoffman, D. L., Novak, T. P. & Schlosser, A. (2000), The Evolution of the Digital Divide: How Gaps in Internet Access May Impact Electronic Commerce. Journal of Computer-Mediated Communication, 5, 0-0. Ju,A., Jeong, S.H., & Chyi, H.I. (2014). Will social media save newspapers? Examining the effectiveness of Facebook and Twitter as news platforms. Journalism Practice, 8(1), 1-17. Kim, Gang-Hoon, Silvana Trimi, & Ji-Hyong Chung. (2014). Big-Data Applications in the Government Sector. Communications of the ACM, 57(3), 77-85. Key, V. O. (1961). Public Opinion and American Democracy . New York: Knopf. LaValle, S., Lesser, E., Shockley, R., Hopkins, M. S., & Kruschwitz, N. (2011). Big Data, Analytics and the Path from Insights to Value. MIT Sloan Management Review, 52(2), 21–31. Lewis, Seth C., Rodrigo Zamith & Alfred Hermida. (2013). Content Analysis in an Era of Big Data: A Hybrid Approach to Computational and Manual Methods. Journal of Broadcasting & Electronic Media, 57(1), 34-52. Manyika, J., Chui, M., Brown, B., Bughin, J., Dobbs, R., Roxburgh, C ., & Byers, A. H (2011). Big data: The next frontier for Innovation, Competition, and Productivity. McKinsey Global Institute. Oberski, D. L. (2012) Comparability of survey measurements. In L. Gideon (Eds), Handbook of survey methodology for the social sciences. New York, NY: Spring New York. Pirog, Maureen A. (2014). Data Will Drive Innovation In Public Policy And Management Research In The Next Decade. Journal of Policy Analysis and Management, 33(2), 537-543. Price, V. (1992). Public Opinion. Newbury Park, CA: Sage. Price, Vincent. (1988). On the Public Aspects of Opinion Linking Levels of Analysis in Public Opinion Research. Communication Research, 15(6), 659-679. Shindelar, S. (2014). Big Data and the Government Agency. Public Manager, 43(1), 52–56. Sjovaag, Helle & Eirik Stavelin. (2012). Web Media and the Quantitative Content Analysis: Methodological Challenges in Measuring On-line New Content. Convergence: The International Journal of Research into New Media Technologies, 18(2), 215-229. Walejko, G. & Ksiazek, T. (2010). Blogging from the niches: The sourcing practices of science bloggers. Journalism Studies, 11(3), 412-427. TechAmerica Foundation (2012). Demystifying big data. Washington, D.C.: TechAmerica Foundation. Retrieved May 21, 2014, from http://www.whitehouse.gov/sites/default/files/microsites/ostp/big_data_press_release_final_2.pdf. United Nations Global Pulse (2013). Big Data for Development: A primer. Retrieved July 23, 2014, from http://www.slideshare.net/unglobalpulse/big-data-for-development-a-primer. Verba, S., & Nie, N. H. (1972). Participation in America: Political Democracy and Social Equality. New York: Harper & Row. van Dijck, J. (2009). Users like you? Theorizing agency in user-generated content. Media Culture & Society, 31, 41-58. Yiu, C. (2012). The Big Data Opportunity: Making Government Faster, Smarter and More Personal. London: Policy Exchange. Zhang, Y., & Zhang, Y. (2013, May). The Study on the Governmental Tactics of Persuasion of Network Public Sentiment. In 2013 International Conference on Public Management (ICPM-2013). Atlantis Press. Zikopoulos, P. C., DeRoos, D., Parasuraman, K., Deutsch, T., Corrigan, D., & Giles, J. (2013). Harness the Power of Big Data. New York: The McGraw-Hill Companies. |
Description: | 碩士 國立政治大學 公共行政學系 102256017 |
Source URI: | http://thesis.lib.nccu.edu.tw/record/#G1022560172 |
Data Type: | thesis |
Appears in Collections: | [公共行政學系] 學位論文
|
Files in This Item:
File |
Size | Format | |
017201.pdf | 2138Kb | Adobe PDF2 | 854 | View/Open |
|
All items in 政大典藏 are protected by copyright, with all rights reserved.
|