Loading...
|
Please use this identifier to cite or link to this item:
https://nccur.lib.nccu.edu.tw/handle/140.119/98554
|
Title: | 極值相依模型下投資組合之重要性取樣法 An importance sampling (IS) for evaluating portfolio with extremal dependence model |
Authors: | 陳家丞 Chen, Chia Chen |
Contributors: | 劉惠美 Liu, Hui Mei 陳家丞 Chen, Chia Chen |
Keywords: | 蒙地卡羅法 投資組合 信用風險 極值相依 重要性取樣法 常態關聯結構 t關聯結構 變異數縮減 |
Date: | 2016 |
Issue Date: | 2016-07-01 14:56:58 (UTC+8) |
Abstract: | 在針對投資組合之信用風險模擬時,如何選取適當的模型來解釋資產間的相依程度是非常重要的。最常用來解釋投資組合的模型為常態關聯結構模型,但近年來發現t關聯結構模型更適合用在解釋投資組合間的相依程度。蒙地卡羅法在針對信用風險模擬上是一個很實用的工具,但是其缺點是模擬時間久且對於發生極端情況時,將不易得到結果,導致其效率過低。而此時,重要性取樣法則是一個很適合用來針對信用風險模擬所使用的工具,其優點在於模擬時間短,且針對極端值也能夠模擬出結果。 本篇文章將蒙地卡羅法作為比較的基準,以Glasserman, and Li (Management Science, 51(11), 1643-1656, 2005) 所提出的二階段重要性取樣法,我們稱為GIS,以及將Chiang et al. (Journal of Derivatives, 15(2), 8-19, 2007) 所提出的重要性取樣法加以改良,我們稱為MIS,針對bassamboo et al. (Operations Research, 56(3), 593-606, 2008) 所提出的極值相依模型,也就是t關聯結構模型進行模擬研究,並根據模擬出來的數值結果判斷重要性取樣法的估計效益,此外,我們也會對常態關聯結構模型進行模擬。依據模擬結果我們發現到,整體而言,在模擬時間上,MIS法所花費的時間較GIS法來得少,在準確率方面,MIS法一樣是比GIS法來的準確,也較為穩定,且MIS法所達到的變異數縮減效果更佳。 |
Reference: | 1.Bassamboo, A.,Juneja, S.and Zeevi, A. (2008),“Portfolio Credit Risk with Extremal Dependence: Asymptotic Analysis and Efficient Simulation” , Operations Research, 56(3), 593-606 2.Chiang, M.H., Yueh, M.L., and Hsieh, M.H. (2007),“An Efficient Algorithm for Basket Default Swap Valuation”, Journal of Derivatives, 15(2), 8-19 3.Glasserman, P., Heidelberger, P. and Shahabuddin, P. (2002),“Portfolio Value-At-Risk with Heavy-Tailed Risk Factors”, Mathematical Finance, 12(3), 239-269 4.Glasserman, P. (2004),“Tail Approximations for Portfolio Credit Risk”, Journal of Derivatives, 12, 24-42 5.Glasserman, P. and Li, J. (2005),“Importance Sampling for Portfolio Credit Risk”, Management Science, 51(11), 1643-1656 6.Glasserman, P. Heidelberger, P. and Shahabuddin, P. (2000),“Variance Reduction Techniques for Estimating Value-at-Risk”, Management Science, 46(10), 1349-1364 7.Han, C.H, and Wu, C.T. (2010),“Efficient importance sampling for estimating lower tail probabilities under Gaussian and Student’s t distributions”, Preprint. National Tsing-Hua University. 2010 8.Li, D.X. (2000),“On Default Correlation: A Coupla Function Approach”, Journal of Fixed Income, 9, 43-54 9.Nocedal, J. and M. Wright (1999), “Numerical Optimization”. New York: Springer-Verlag |
Description: | 碩士 國立政治大學 統計學系 103354012 |
Source URI: | http://thesis.lib.nccu.edu.tw/record/#G0103354012 |
Data Type: | thesis |
Appears in Collections: | [統計學系] 學位論文
|
Files in This Item:
File |
Size | Format | |
401201.pdf | 2344Kb | Adobe PDF2 | 324 | View/Open |
|
All items in 政大典藏 are protected by copyright, with all rights reserved.
|