政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/98248
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  全文笔数/总笔数 : 113313/144292 (79%)
造访人次 : 50944218      在线人数 : 957
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻
    政大機構典藏 > 資訊學院 > 資訊科學系 > 會議論文 >  Item 140.119/98248


    请使用永久网址来引用或连结此文件: https://nccur.lib.nccu.edu.tw/handle/140.119/98248


    题名: Exploiting Latent Social Listening Representations for Music Recommendations
    作者: Chen, Chih-Ming;Chien, Po-Chuan;Lin, Yu-Ching;Tsai, Ming-Feng;Yang, Yi-Hsuan
    陳志明;蔡銘峰
    贡献者: 資科系
    关键词: Representation Learning, Factorization Machine, Recommender System, Social Network, Graph
    日期: 2015-09
    上传时间: 2016-06-22 17:20:04 (UTC+8)
    摘要: Music listening can be regarded as a social activity, in which people can listen together and make friends with one other. Therefore, social relationships may imply multiple facets of the users, such as their listening behaviors and tastes. In this light, it is considered that social relationships hold abundant valuable information that can be utilized for music recommendation. However, utilizing the information for recommendation could be di cult, because such information is usually sparse. To address this issue, we propose to learn the latent social listening representations by the DeepWalk method, and then integrate the learned representations into Factorization Machines to construct better recommendation models. With the DeepWalk method, user social relation-ships can be transformed from the sparse and independent and identically distributed (i.i.d.) form into a dense and non-i.i.d. form. In addition, the latent representations can also capture the spatial locality among users and items, therefore bene ting the constructed recommendation models.
    關聯: Poster Proceedings of the 9th ACM Conference on Recommender Systems (RecSys `15), 2015
    数据类型: conference
    显示于类别:[資訊科學系] 會議論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    1-2.pdf316KbAdobe PDF2788检视/开启


    在政大典藏中所有的数据项都受到原著作权保护.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈