Reference: | 一、中文部份 [1] 鄭錦聰, MATLAB 入門引導(民國84 年) ,全華科技圖書公司。
二、英文部分 [2] Antoniadis, A., 1994, Smoothing Noise Data with Coiflets, Statistica Sinica, Vol. 4, No.2, 651-678. [3] Antoniadis, A. and Lavergne, c., 1995, Variance Function Estimation in Regression by Wavelet Methods, In Wavelets and Statistics ( Antoniadis, A. and Oppenheim, G. eds. ), Springer-Verlag Press, New York, 31-42 . [4] Abramovich, F. and Benjamini, Y., 1995, Thresholding of Wavelet Coefficients as Multiple Hypothesis Testing Procedure, In Wavelets and Statistics ( Antoniadis, A. and Oppenheim, G. eds. ), SpringerVerlag Press, New York, 5-14. [5] Abramovich, F. and Benjamini, Y., 1995, Thresholding of Wavelet Coefficients as Multiple Hypothesis Testing Procedure, In Wavelets and Statistics ( Antoniadis, A. and Oppenheim, G. eds. ), SpringerVerlag Press, New York, 5-14 [6] Battle, G. and Federbush, P., Ondelettes and Phase Cell Cluster Expansions: A Vindication, Comm. Math. Phys. Vol. 109,417-419. [7] Benjamini, Y. and Hochberg, Y., 1995, Controlling the False Discovery Rate : A Practical and Powerful Approach to Multiple Testing, Journal Royal Statistical Society B, 57, 289-300. [8] Breiman L. and Peters, S., 1992, Comparing Automatic Smoothers, Internet. Statist. Rev., 60,271-290. [9] Buckheit, 1. B. and Donoho, D. L., 1995, Wavelab and Reproducible Research, In Wavelets and Statistics ( Antoniadis, A. and Oppenheim, G. eds. ), Springer-Verlag Press, New York, 55-81. [10] Chui, c. K., 1992, An Introduction to Wavelets, Academic Press, New York. [11] Cleveland, W. S., 1979, Robust Locally Weighted Regression and Smoothing Scatterplots, Journal of the American Statistical Association, 74, 829-836. [12] Daubechies, I., 1988, Orthonormal Bases of Compactly Supported Wavelets, Comm. Pure and Appl. Math., 41,909-996. [13] Daubechies, I., 1990, OrthonOImal Bases of Compactly Supported Wavelets 2, Variation on a Theme. Preprint, submitted to SlAM Journal Math. Anal. [14] Daubechies, I., 1992, Ten Lecture on Wavelet, SIAM, CBMS Series, April. [15] Daubechies, 1., Grossmann, A. and Meyer, Y., 1986, Painless Nonorthogonal Expansions, 1. Math. Phys., 27, 1271-1283. [16] Donoho, D. L. and Johnstone, 1. M., 1994(a), Adapting to Unknown Smoothness via Wavelet Sluinkage, 1. Amer. Stat. Stat. Assoc. ( to appear ). ftp://playfair.stanford.eduJpub/donoho/ausws.ps .Z [17] Donoho, D. L. and Johnstone, 1. M., 1994(b), Ideal Spatial Adaptation by Wavelet Shrinkage, Biometrika, 81, 425-455. ftp://playfair.stanford.eduJpub/donoho/isaws. ps.Z [18] Dooijes, E. H., 1993, Conjugate Quadrature Filters for Multiresolution Analysis and Synthesis, In Wavelets : An Elementary Treatment of Theory and Applications( Koomwinder, T. H. eds. ), World Scientific Press, USA, 129-138. [19] Gabor, D., 1946, Theory of Communication, Journal of the lEE., Vol.93,429-457. [20] Grossmann, A, and Morlet, 1., 1984, Decomposition of Hardy Functions into Square Integrable Wavelets of Constant Shape, SlAM 1. Math., Vol. 15, No. 14,723-736. [21] Hastie, T. 1. and Tibshirani, R. 1., 1990, Generalized Additive Models, Chapman and Hall, London. [22] Kay,1.; 1994, Wavelets, Advance in Applied Statistics, 209-224 [23] Mallat, S. G., 1989(a), A Theory for Multiresolution Signal Decomposition: The Wavelet Representation, IEEE Trans. Pattern Analysis and Machine intelligence., Vol. 11, No.7, July. [24] Mallat, S. G., 1989(b),Multiresolution Approximation and Wavelet OrthonoIIDal Bases of L2(R), Transactions of the American Mathmatical SOCiety, 315, 69-87. [25] MATLAB User`s Guide, 1992, Ver. 4, The Math Works Inc .. [26] MATLAB Reference Guide, 1992, Ver. 4, The Math Works Inc .. [27] Meyer, Y., 1985, Principe D`incertitude, Bases Hilbertiennes et Algebres D`operateurs, Bourbaki Seminar, No. 662. [28] Morlet, 1. and Grossmann, A., 1984, Decomposition of Hardy Functions into Square Integrable Wavelets of Constant Shape, SlAM J. Math., Vol. 15, 723-736. [29] Nason, G. P., 1994, Wavelet Regression by Cross-Validation, Technical Report 447, Department of Statistics, Stanford University, Stanford. [30] Nason, G. P., 1995, Choice of the Threshold Parameter in Wavelet Function Estimation, In Wavelets and Statistics ( Antoniadis, A. and Oppenheim, G. eds. ), Springer-Verlag Press, New York, 261-280. [31] Nussbaum, M., 1985, Spline Smoothing in Regression Models and Asymptotic Efficiency in 4, Ann. Statist, 13, 984-997. [32] Press, W. H., 1991, Wavelet Transform, Technique Report by Numerical Recipes Software. [33] Rioul, O. and Vetterli, M., 1991, Wavelets and Signal Processing, IEEE SP Magazine, 14-38. [34] S-PLUS Guide to Statistical and Mathematical Analysis, 1993, Verso 3.2, StatSci, a division of MathSoft, Inc .. [35] Silverman, B. W., 1986, Density Estimation for Statistics and Data Analysis, Chapman and Hall, London. [36] Stone, C. 1., 1982, Optimal Global Rates of Convergence for nonparametric Regression, Ann. Statist, 10, 1040-1053 . [37] Strang, G., 1989, Wavelets and Dilation Equations, SIAM Review, Vol. 31, 614-627. [38] Venables, W. N. and Ripley, B. D., 1994, Modern Applied Statistics with S-Plus, Springer-Verlag Press, New York. [39] Vidakovic, B., 1994, Nonlinear Wavelet Shrinkage with Bayes Rules and Bayes Factors, (submitted for publication). [40] Wang, Y., 1994, Function Estimation via Wavelets for Data with Long-Range Dependence, Technical Report, University of Missouri, Columbia. [41.] Zhang, Q., 1995, Wavelets and Regression Analysis, In Wavelets and Statistics ( Antoniadis, A. and Oppenheim, G. eds. ), Springer-Verlag Press, New York, 397-407. |