English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113160/144130 (79%)
Visitors : 50753300      Online Users : 614
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 商學院 > 資訊管理學系 > 學位論文 >  Item 140.119/95980
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/95980


    Title: 擴充先前知識以輔助資料發掘
    Extending Prior Knowledge for Data Mining
    Authors: 林幸怡
    Contributors: 楊亨利
    林幸怡
    Keywords: 資料發掘
    先前知識
    Data Mining
    Prior Knowledge
    Date: 1997
    Issue Date: 2016-05-10 16:16:10 (UTC+8)
    Abstract:   資料發掘研究重點在於幫助使用者於眾多現存資料中發掘出隱含於其內而先前未知的可能有用資料。目前有三大主要研究派別:(1)類神經網路(2)歸納學習方法論(3)統計方法。由於本研究之研究目的在於加入先前知識於資料發掘過程中,因此選用歸納學習方法論。歸納學習方法其內又可分為樹狀分類法,關聯分析法及概念樹導向歸納學習法,由於採概念樹導向歸納學習法所能處理的資料發掘問題種類較完整,其它二種歸納學習方法均著重於某一特定種類的資料發掘問題處理,因此,本研究針對概念樹導向歸納學習法做研究基礎,探討先前知識的種類及其運用方式,以期能增加資料發掘後的意義性。
      首先從文獻中了解目前資料發掘領域的研究現況,從而由擴充先前知識的角度切入,利用企業法則、實體層次之一般化、集合化、聚集化等抽象化觀念、延伸之資料字典及經驗法則等先前知識得出更合適的資料以供資料發掘,並對於概念樹導向歸納學習法做適當的修改,提出研究架構。再以假想的學校資料庫,發展出一套雛形系統,驗証本架構的可行性。最後提出進一步的研究建議,以供後續研究參考。
      The research objective of data mining is to help users find previous unknown and maybe usable information from database. There are three ways to do this:(l)neutral network (2)inductive learning (3)statistics. Inductive Learning has three different ways: learning by decision trees, association rules and using concept trees.
      Because concept trees approach to inductive learning can solve more kinds of problem, the other two ways just can solve one kind of problem, we choose using concept trees to be our foundation of this research. At the same time, we explore and discuss serveral kinds of prior knowledge and their applications. We hope that it can increase the semantics of mining results.
      This thesis, first surveys previous research in data mining and discuss the prior knowledge that they included. Then, we propose our idea of extending and using prior knowledge including data abstractions (generalization, association and aggregation) in the extended entity-relationship model, bussiness rule, extended data dictionary and heuristics, in order to assist the process of data mining. A prototype is reported to prove our research architecture. Finally, some sugestion are given to future research.
    Description: 碩士
    國立政治大學
    資訊管理學系
    84356010
    Source URI: http://thesis.lib.nccu.edu.tw/record/#A2010000736
    Data Type: thesis
    Appears in Collections:[資訊管理學系] 學位論文

    Files in This Item:

    File SizeFormat
    index.html0KbHTML2270View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback