Reference: | 中文參考文獻
1. 王碩濱(2006),「以經濟物理學觀點分析台灣股市日內時間序列」,國立東華大學應用物理研究所碩士論文
2. 田瀅嫆(2006),「厚尾分配下風險值與ETL探討--穩定分配與一般化誤差分配的應用」,銘傳大學財務金融系碩士論文
3. 任青松(2002),「台灣股價指數與期貨指數之價量關聯性研究」,國立高雄第一科技大學財務管理系碩士論文
4. 苟成玲 李英姿 劉玉萍(2006),「金融市場研究的新視角」,中國科技論文在線
5. 保羅∙奧莫羅德(2000),「蝴蝶效應經濟學」,聯經
6. 保羅∙奧莫羅德(2008),「敗部經濟學—99%失敗與1%成功的道理」,早安財經文化
7. 馬克∙布侃南(2003),「連結—混沌、複雜之後,最具開創性的小世界理論」,天下文化
7. 陳焙焿(2007),「台灣股價指數期貨報酬率與成交量關係之研究」,南華大學財務管理研究所碩士論文
9. 菲利浦∙鮑爾(2008),「用物理學找到美麗新世界—洞悉事務如何環環相扣」,木馬文化
10. 華德羅普(1994),「複雜—走在秩序與混沌邊緣」,天下文化
英文參考文獻
1. Arthur W.B., “Complexity and the Economy”, Science, 2 April 1999, 284, 107-109
2. Bonabeau Eric, “Agent-based modeling: Methods and techniques for simulating human systems”, Proceedings of the National Academy of Sciences , May 14, 2002 vol. 99 no. Suppl 3 7280-7287
3. Challet D., “Inter-pattern speculation beyond Minority, Majority and $-games”, arXiv:physics/0502140v3
4. Challet D. and Matteo Marsili, “Criticality and finite size effects in a simple realistic model of stock market” , Phys. Rev. E Volume 68 (2003),Issue 3
5. Challet D. and Y.C. Zhang, “Emergence of Cooperation and Organization in an Evolutionary Game”, Physica A 246 (1997), pp. 407–418.
6. Challet D., Marsili M. and Riccardo Zecchina, “Exact solution of a modified El Farol`s bar problem: Efficiency and the role of market impact” , arXiv:cond-mat/9908480v3.
7. Challet D., and Yi-Cheng Zhang, “On the minority game: Analytical and numerical studies”, Physica A 256 (1998), pp. 514–532.
8. Challet D., Marsili M. and Andrea De Martinoc, “Stylized facts in minority games with memory: a new challenge”, Physica A 338 (2004), pp. 143-150.
9. Challet D. and M. Marsili, “Phase transition and symmetry breaking in the minority game”, Physical Review E 60 (1999), pp. R6271–R6274.
10. DuMouchel, W.H. (1983), “Estimating the Stable Index α in Order to Measure Tail Thickness: A Critique ”, The Annals of Statistics 11, 1019-1031.
11. Ferreira F.F., Oliveira V.M.D., Crepaldi A.F. and P.R.A. Campos, “Agent based model with heterogeneous fundamental prices”, Physica A 357 (2005), pp. 534–542.
12. Ferreira F. F., Francisco G., Machado B. S. and Paulsamy Muruganandam, “Time series analysis for minority game simulations of financial markets”, Physica A 321 (2003), pp. 619-632.
13. Fama E. F., “The Behavior of Stock-Market Prices”, Journal of Business, Vol. 38, 1965, pp. 34-105.
14. Galla T., Mosetti G. and Yi-Cheng Zhang, “Anomalous fluctuations in Minority Games and related multi-agent models of financial markets”, arXiv:physics/0608091v1.
15. Guptaa N., Hausera R. and Neil F. Johnson, “Using Artificial Market Models to Forecast Financial Time-Series”, arXiv:physics/0506134v2.
16. Hart M.L., Johnson N.F., Lamper D., Jefferies P., and S. Howison, “Application of multi-agent games to the prediction of financial time-series”, arXiv:cond-mat/0105303 v1, Physica A 299 (2001), pp. 222–227.
17. Hart M.L., D Lamper, and N.F. Johnson “ An investigation of crash avoidance in a complex system”, Physica A, Volume 316, Number 1, 15 December 2002 , pp. 649-661(13).
18. Jefferies P. and Neil F. Johnson ,“Designing agent-based market models”, arXiv:cond-mat/0207523.
19. M.L. Hart, Jefferies P., Hui P.M. and N.F. Johnson, “From market games to real-world markets”, Eur. Phys. J. B 20 (2001), pp. 493–501.
20. Marsili M. , “Market mechanism and expectations in minority and majority games”, Physica A 299 (2001), pp. 93–103.
21. Mantegna, R.N. (1994), “Fast, accurate algorithm for numerical simulation of Levy stable stochastic processes”, Physical Review E 49: 4677-4683.
22. Mantegna, R.N. and H.E. Stanley(1994), “Stochastic processes with ultraslow convergence to a Gaussian: The truncated Lévy flight”, Physical Review Letters 73: 2946-2949.
23. Mantegna R.N. and Stanley, H.E. (1995). “Scaling behavior in the dynamics of an economic index”, Nature 376: 46-49.
24. Nolan J. P., “Fitting Data and Assessing Goodness with Stable Distributions”, Engineering and Statistics, American University, Washington, DC, June 3-5, 1999.
25. Yi-Cheng Zhang, “ Why Financial Markets Will Remain Marginally Inefficient”, arXiv:cond-mat/0105373v1.
26. Yi-Cheng Zhang, “Toward a Theory of Marginally Efficient Markets”, Physica A 269 (1999), pp. 30-44.
27. Johnson N.F., Jefferies P. and P.M. Hui, “Financial Market Complexity”, Oxford University Press, Oxford (2003).
28. Mantegna R.N., and H. E. Stanley, “An Introduction to Econophysics: Correlations and Complexity in Finance”, Cambridge University Press, Cambridge, 2000 |