政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/95125
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  全文筆數/總筆數 : 113392/144379 (79%)
造訪人次 : 51205087      線上人數 : 890
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    政大機構典藏 > 商學院 > 統計學系 > 學位論文 >  Item 140.119/95125
    請使用永久網址來引用或連結此文件: https://nccur.lib.nccu.edu.tw/handle/140.119/95125


    題名: 雙變量Gamma與廣義Gamma分配之探討
    作者: 曾奕翔
    貢獻者: 陳麗霞
    曾奕翔
    關鍵詞: 雙變量廣義伽瑪分配
    雙變量常態分配
    存活分析
    敏感度分析
    bivariate generalized gamma distribution
    bivariate normal distribution
    survival analysis
    sensitivity analysis
    日期: 2009
    上傳時間: 2016-05-09 15:11:43 (UTC+8)
    摘要: Stacy (1962)首先提出廣義伽瑪分配 (generalized gamma distribution),此分布被廣泛應用於存活分析 (survival analysis) 以及可靠度 (reliability) 中壽命時間的資料描述。事實上,像是指數分配 (exponential distribution)、韋伯分配 (Weibull distribution) 以及伽瑪分配 (gamma distribution) 都是廣義伽瑪分配的一個特例。
    Bologna (1987)提出一個特殊的雙變量廣義伽瑪分配 (bivariate generalized gamma distribution) 可以經由雙變量常態分配 (bivariate normal distribution) 所推得。我們根據他的想法,提出多變量廣義伽瑪分配可以經由多變量常態分配所推得。在過去的研究中,學者們做了許多有關雙變量伽瑪分配。當我們提到雙變量常態分配,由於其分配的型式為唯一的,所以沒人任何人對其分配的型式有疑問。然而,雙變量伽瑪分配卻有很多不同的型式。
    在這篇論文中的架構如下。在第二章中,我們介紹並討論雙變量廣義伽瑪分配可以經由雙變量常態分配所推得,接著推導參數估計以及介紹模擬的程序。在第三章中,我們介紹一些對稱以及非對稱的雙變量伽瑪分配,接著拓展到雙變量廣義伽瑪分配,有關參數的估計以及模擬結果也將在此章中討論。在第三章最後,我們建構參數的敏感度分析 (sensitivity analysis)。最後,在第四章中,我們陳述結論以及未來研究方向。
    The generalized gamma distribution was introduced by Stacy (1962). This distribution is useful to describe lifetime data when conducting survival analysis and reliability. In fact, it includes the widely used exponential, Weibull, and gamma distributions as special cases.
    Bologna (1987) showed that a special bivariate genenralized gamma distribution can be derived from a bivariate normal distribution. Follow his idea, we show that a multivariate generalized gamma distribution can be derived from a multivariate normal distribution. In the past, researchers spend much time in working on a bivariate gamma distribution. When a bivariate normal distribution is mentioned, no one feels puzzled about its form, since it has only one form. However, there are various forms of bivariate gamma distributions.
    In this paper is as following. In Chapter 2, we introduce and discuss the bivariate generalized gamma distribution, then the multivariate generalized gamma distribution is derived. We also develop parameters estimation and simulation procedure. In Chapter 3, we introduce some symmetrical and asymmetrical bivariate gamma distributions, then they are extended to the bivariate generalized gamma distributions. Problems of parameters estimation and simulation results are also discussed in Chapter 3. Besides, sensitivity analyses of parameters estimation are conducted. Finally, we state conclusion and future work in Chapter 4.
    參考文獻: Bologna, S. (1987). On a bivariate generalized gamma distribution. Statistica, 47, 543-548.

    Bithas, P. S., Nikos C. S., Theodoros A. T. and George K. K. (2007). Products and ratios of two Gaussian class correlated Weibull random variables, in The 12th International Conference, ASMDA 2007. (Channia, Greece).

    Bithas, P. S., Nikos C. S., Theodoros A. T. and George K. K. (2007). Distributions involving correlated generalized gamma variables, in The 12th International Conference, ASMDA 2007. (Channia, Greece).

    Chatelain, F., Tourneret, J.-Y., Inglada, J. and Ferrari, A. (2006). Parameter estimation for multivariate gamma distributions. Application to image registration, in Proc. EUSIPCO-06, (Florence, Italy).

    Chatelain, F. and Tourneret, J.-Y. (2007). Bivariate gamma distributions for multisensor sar images, in Acoustics, Speech and Signal Processing, ICASSP 2007. IEEE International Conference.

    Cherian, K. C. (1941). A bivariate correlated gamma-type distribution function. Journal of the Indian Mathematical Society, 5, 133-144.

    Gradshteyn, I. S. and Ryzhik, I. M. (1965). Table of Integrals, Series, and Products. Academic Press, New York.

    Hardy, G.. H. (1932). Summation of a series of polynomials of Laguerre. Journal of the London Mathematical Society, 8, 138-139.

    Joe, H. (1997). Multivariate Models and Dependence Concepts. Chapman & Hall, London.

    Joe, H. and Xu, J. (1996). The estimation method of inference functions for margins for multivariate models. Department of Statistics, University of British Columbia. Technical Report, 166.

    Kibble, W. F. (1941). A two-variate gamma type distribution. Sankhya, 5, 137-150.
    Kotz, S., Balakrishnan, N., and Johnson, N. L. (2000). Continuous Multivariate Distributions. Second Edition. New York: John Wiley & Sons.

    Loaiciga, H. A. and Leipink, R. B. (2005). Correlated gamma variables in the analysis of microbial densities in water. Advance in Water Resource, 28, 329-335.

    Lawless, J. F. (1980). Inference in the generalized gamma and log gamma distributions. Technometrics, 33, 409-419.

    Mckay, A. T. (1934). Sampling from batches. Journal of the Royal Statistical Society, 1, 207-216.

    Mardia, K. V. (1970). Families of Bivariate Distributions. Griffin, London

    Moran, P. A. P. (1967). Testing for correlation between non-negative variates. Biometrika, 54, 385-394.

    Nadarajah, S. and Gupta, A. K. (2006). Some bivariate gamma distributions. Applied Mathematics Letters, 19, 767-774.

    Nadarajah, S. and Kotz, S. (2006). Bivariate gamma distributions, sums, and ratios. Bulletin of the Brazilian Mathematical Society, New Series, 37(2), 241-274.

    Nadarajah, S. and Kotz, S. (2007). A note on the correlated gamma distribution of Loaiciga and Leipnik. Advance in Water Resource, 30, 1053-1055.

    Nestler, J. M. (1993). Instream flow incremental methodology: A synopsis with recommendations for use and suggestions for future research. Technical Report, EL-93-3.

    Piboongungon, T., Aalo, V. A., Iskander, C. D. and Efthymoglou, G. P. (2005). Bivariate generalised gamma distribution with arbitrary fading parameters. Electronics Letters, 41, 709-710.

    Ramabhadran, V. R. (1951). A multivariate gamma-type distribution. Sankhya, 11, 45-46.

    Sarmanov, I. O. (1970). Gamma correlation process and its properties. Doklady Akademii Nauk, SSSR, 191, 30-32.

    Smith, O. E., Adelfang, S. I. and Tubbs, J. D. (1982). A bivariate gamma probability distribution with application to guest modeling. NASA Technical Report TM-82483.

    Stacy, E. W. (1962). A generalization of the gamma distribution. Annals of Mathematical Statistics, 33, 1187-1192.

    Tunaru, R. and Albota, G. (2005). Estimating risk neutral density with a generalized gamma distribution. Cass Business School Working Paper.

    Wolfram, S (2006). The Wolfram functions site. Internet, http://integrals.wolfram.com

    Yue, S., Ouarda, T.B.M.J. and Bobee, B. (2001). A review of bivariate gamma distributions for hydrological application. Journal of Hydrology, 246, 1-18.
    描述: 博士
    國立政治大學
    統計學系
    91354502
    資料來源: http://thesis.lib.nccu.edu.tw/record/#G0913545023
    資料類型: thesis
    顯示於類別:[統計學系] 學位論文

    文件中的檔案:

    檔案 大小格式瀏覽次數
    index.html0KbHTML2312檢視/開啟


    在政大典藏中所有的資料項目都受到原著作權保護.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋