政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/95123
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  全文筆數/總筆數 : 113324/144300 (79%)
造訪人次 : 51112551      線上人數 : 843
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    政大機構典藏 > 商學院 > 統計學系 > 學位論文 >  Item 140.119/95123
    請使用永久網址來引用或連結此文件: https://nccur.lib.nccu.edu.tw/handle/140.119/95123


    題名: 競爭風險下長期存活資料之貝氏分析
    Bayesian analysis for long-term survival data
    作者: 蔡佳蓉
    貢獻者: 陳麗霞
    蔡佳蓉
    關鍵詞: 治癒率模式
    競爭風險
    混合模式
    擴充的概似函數
    馬可夫鏈蒙地卡羅方法(MCMC)
    完全條件後驗分配
    Gibbs 抽樣法
    條件預測指標(CPO)
    對數擬邊際概似函數值(LPML)
    cure rate models
    competing risks
    mixture models
    augmented likelihood functions
    Markov Chain Monte Carlo method(MCMC)
    full conditional posterior distributions
    Gibbs samplings
    conditional predictive ordinate(CPO)
    log of pseudo marginal likelihood(LPML)
    日期: 2009
    上傳時間: 2016-05-09 15:11:37 (UTC+8)
    摘要: 當造成失敗的原因不只一種時,若各對象同一時間最多只經歷一種失敗原因,則這些失敗原因稱為競爭風險。然而,有些個體不會失敗或者經過治療之後已痊癒,我們稱這部分的群體為治癒群。本文考慮同時處理競爭風險及治癒率的混合模式,即競爭風險的治癒率模式,亦將解釋變數結合到治癒率、競爭風險的條件失敗機率,或未治癒下競爭風險的條件存活函數中,並以建立在完整資料上之擴充的概似函數為貝氏分析的架構。對於右設限對象則以插補方式決定是否會治癒或會因何種風險而失敗,並推導各參數的完全條件後驗分配及其性質。由於邊際後驗分配的數學形式無法明確呈現,再加上需對右設限者判斷其狀態,所以採用屬於馬可夫鏈蒙地卡羅法的Gibbs抽樣法及適應性拒絕抽樣法(adaptive rejection sampling) ,執行參數之模擬抽樣及設算右設限者之治癒或失敗狀態。實證部分,我們分析Klein and Moeschberger (1997)書中骨髓移植後的血癌病患的資料,並用不同模式之下的參數模擬值計算各對象之條件預測指標(CPO),換算成各模式的對數擬邊際概似函數值(LPML),比較不同模式的優劣。
    In case that there are more than one possible failure types, if each subject experiences at most one failure type at one time, then these failure types are called competing risks. Moreover, some subjects have been cured or are immune so they never fail, then they are called the cured ones. This dissertation discusses several mixture models containing competing risks and cure rate. Furthermore, covariates are associated with cure rate, conditional failure rate of each risk, or conditional survival function of each risk, and we propose the Bayesian procedure based on the augmented likelihood function of complete data. For right censored subjects, we make use of imputation to determine whether they were cured or failed by which risk and derive full conditional posterior distributions. Since all marginal posterior distributions don’t have closed forms and right censored subjects need to be identified their statuses, we take Gibbs sampling and adaptive rejection sampling of Markov chain Monte Carlo method to simulate parameter values. We illustrate how to conduct Bayesian analysis by using the bone marrow transplant data from the book written by Klein and Moeschberger (1997). To do model selection, we compute the conditional predictive ordinate(CPO) for every subject under each model, then the goodness is determined by the comparing the value of log of pseudo marginal likelihood (LMPL) of each model.
    參考文獻: Boag, J.W. (1949). Maximum likelihood estimates of the proportion of patients cured by cancer therapy. Journal of the Royal Statistical Society 11, 15-53.

    Berkson, J. and Gage, R. P. (1952). Survival curve for cancer patients following treatment. Journal of the American Statistical Association 47, 501-515.

    Betensky, R. A. and Schoenfeld, D. A. (2001). Nonparametric estimation in a cure model with random cure times. Biometrics 57, 282-286.

    Casella, G. and George, E. I. (1992). Explaining the Gibbs sampler. The American Statistician 46, 167-174.

    Choa, E. C.(1994). A comparison of models including possibility of cure for survival data. Ph.D. dissertation, University of Michigan, Ann Arbor.

    Choa, E. C. (1998). Gibbs Sampling for long-term survival data with competing risks. Biometrics 54, 350-366.

    Cantor, A. B. and Shuster, J. J. (1992). Parametric versus non-parametric methods for estimating cure rates based on censored survival data. Statistics in Medicine 11, 931-937.

    Farewell, V. T. (1977). A model for a binary variable with time-censored observations. Biometrika 64, 43-46

    Farewell, V. T. (1982). The use of mixture models for the analysis of survival data with long-term survivors. Biometrics 38, 1041-1046.

    Farewell, V. T. (1986). Mixture models in survival analysis: Are they worth the risk? The Canadian Journal of Statistics 14, 257-262.

    Geman, S. and Geman, D. (1984). Stochastic relaxation, Gibbs distributions and the Bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence 6, 721-741.


    Gelfand, A. E., Smith, A. F. M. (1990). Sampling-based approaches to calculating marginal densities. Journal of the American Statistical Association 87, 523-532.

    Gelfand, A. E. and Dey, D. K. (1994). Bayesian model choice: asymptotics and exact calculations. Journal of the Royal Statistical Society, Series B 56, 501-514.

    Ghitany, M. E. and Maller, R. A. (1992). Asymptotic results for exponential mixture models with long-term survivors. Statistics 23, 321-336.

    Ghitany, M. E., Maller, R. A., and Zhou, S. (1994). Exponential mixture models with long-term survivors and covariates. Journal of Multivariate analysis 49, 218-241.

    Gilks, W. R., and Wild, P. (1992). Adaptive rejection sampling for Gibbs sampling. Applied Statistics 41, 337-348.

    Greenhouse, J. B. and Wolfe, R. A. (1984). A competing risks derivation of a mixture model for the analysis of survival data. Communications in Statistics—Theeory and Method 13, 3133-3154.

    Kalbfleisch, J. D. and Prentice, R. L. (1980). The statistical Analysis of Failure Time Data. New York: Wiley

    Kuk, A. Y. C. and Chen, C. (1992). A mixture model combining logistic regression with proportional hazards regression. Biometrika 79, 531-541.

    Larson, M. G. and Dinse, G. E. (1985). A mixture model for the regression analysis of competing risks data. Applied Statistics 34, 201-211

    Laska, E. M. and Meisner, M. J. (1992). Nonparametric estimation and testing in a cure model. Biometrics 48, 1223-1234.

    Ng, S. K. and McLachlan, G. J. (2003). An EM-based semi-parametric mixture model approach to the regression analysis of competing-risks data.

    Peng, Y. and Dear, K. B. G. (2000) A nonparametric miture model for cure rate estimation. Biometrics 56, 237-243.


    Taylor, J. M. G. (1995). Semi-parametric estimation in failure time mixture models. Biometrics 51, 899-907.
    描述: 碩士
    國立政治大學
    統計學系
    96354023
    資料來源: http://thesis.lib.nccu.edu.tw/record/#G0096354023
    資料類型: thesis
    顯示於類別:[統計學系] 學位論文

    文件中的檔案:

    檔案 大小格式瀏覽次數
    index.html0KbHTML2338檢視/開啟


    在政大典藏中所有的資料項目都受到原著作權保護.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋