English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113648/144635 (79%)
Visitors : 51581091      Online Users : 912
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 商學院 > 統計學系 > 學位論文 >  Item 140.119/95117
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/95117


    Title: 一籃子違約交換評價之演算法改進
    Improved algorithms for basket default swap valuation
    Authors: 詹依倫
    Chan, Yi-Lun
    Contributors: 劉惠美
    詹依倫
    Chan, Yi-Lun
    Keywords: 一籃子違約風險交換
    多因子模型
    Importance Sampling
    Date: 2009
    Issue Date: 2016-05-09 15:11:22 (UTC+8)
    Abstract: 各項信用衍生性商品中,最廣為人知的商品即為違約風險交換(credit default swap; CDS),但由於金融市場與商品的擴張,標的資產不再侷限單一資產而是增加至數家或數百家,而多個標的資產的違約風險交換稱為一籃子違約風險交換(basket default swap; BDS)。
    根據Chiang et al. ((2007), Journal of Derivatives, 8-19.),在單因子模型中應用importance sampling (IS) 來估計違約給付金額,不僅可以確保違約事件的發生,還可以提高估計的效率,因此本文延伸此一概念,將此方法拓展至多因子模型。本文分為三種方法:一為將多個獨立因子合併為一邊際因子,並針對此邊際因子做importance sampling;二為找出其最具影響性的因子應用importance sampling;最後,我們針對portfolio C 於Glasserman ((2004), Journal of Derivatives, 24-42.) 將標的資產分為獨立兩群,我們將分段利用exponential twist及Chiang et al. (2007)所提出的單因子方法,提升違約事件發生的機率。
    借由數值模擬結果,發現將多個獨立因子合併為一邊際因子的方法應用於標的資產為同質模型(homogeneous model),會有較佳的結果;對具影響性的因子應用importance sampling的方法於各種模型之下的估計結果都頗為優秀,但其variance reduction較差且流程較不符合現實財務狀況,方法三則為特殊模型的應用,其只適用於能將標的資產獨立分群的模型,並且估計準確與否和選取exponential twist的位置有重要關係,第四節我們將同時呈現兩個不同位置的估計值與variance reduction.
    Credit default swap (CDS) is the most popular in many kinds of credit derivatives, but number of obligor couldn’t be one always because of the expansions of financial market and contracts. CDS which has been contained more than one obligor is called basket default swap (BDS).
    According to Chiang et al. ((2007), Journal of Derivatives, 8-19.), applying importance sampling to estimate the default payment in one factor model could not only guarantee the default event occurs but also improve the efficiency of estimation. So this paper extends this concept for expanding this method to multiple factors model. There are three methods for expanding: First, merge multiple factors into a marginal factor and apply importance sampling to this marginal factor; second, apply importance sampling to the factor which has higher factor loading and third, we consider portfolio C in Glasserman ((2004), Journal of Derivatives, 24-42.) and divide total obligors into two independent groups. We would use the ways of exponential twist and the method in one factor model of Chiang et al. (2007) considered in two parts to raise the probability of default event occur.
    Borrow by the result of numerical simulation, method 1 has better results when obligors are homogeneous model; the results of method 2 are outstanding in each model, but its efficiency is worse and the procedure doesn’t fit with the realistic financial situation; the third method is the application of the special model, it could only apply to the model which could separate obligors independently, and the accuracy of estimates is strongly correlated to the position of exponential twist. In section 4, we would display the estimator and variance reduction in two different positions.
    Reference: 1. Bassamboo, A., Juneja, S. and Zeevi, A (2008). “Portfolio Credit Risk with Extremal Dependence: Asymptotic Analysis and Efficient Simulation.” Operations Research, Vol. 56, pp. 593-606.
    2. Casella, G. and George, E.I. (1992) “Explaining the Gibbs Sampler.” The American Statistician, Vol. 46, pp. 167-174.
    3. Chang, M.H., Yueh, M.L. and Hsieh, M.H. (2007). “An Efficient Algorithm for Basket Default Swap Valuation.” Journal of Derivatives, Vol. 15, pp. 8-19.
    4. Embrechts, P., Lindskog, F. and McNeil, A. (2001). “Modelling Dependence with Copulas and Applications to Risk Management.” Working paper, Risklab ETH Zurich.
    5. Glasserman, P. (2004). “Tail Approximations for Portfolio Credit Risk.” Journal of Derivatives, Vol. 12, pp. 24-42.
    6. Glasserman, P. and Li, J. (2005). “Importance Sampling for Portfolio Credit Risk.” Journal of Management Science, Vol. 51, pp. 1643-1656.
    7. Gould, H., Tobochnik, J. and Christian, W. (2006). An Introduction to Computer Simulation Methods. 3 edition, Addison Wesley.
    8. Hull, J. and White, A. (2006). “Valuing Credit Derivatives Using an Implied Copula Approach.” Journal of Derivatives, Vol. 14, pp. 8-28.
    9. Laurent, L.P. and Gregory, J. (2005). “Basket Default Swaps, CDO`s and Factor Copulas.” Journal of Risk, Vol. 7, pp.103-122..
    10. Li, D.X. (1998). “Constructing a Credit Curve.” Credit Risk, Special report on Credit Risk, pp. 40-44.
    …… (2000). “On Default Correlation: A Copula Function Approach.” Journal of Fixed Income, Vol. 9, pp. 43-54.
    11. Lucas, A., Klaassen, P., Spreij, P. and Straetmans, S. (2003). “Tail behaviour of credit loss distributions for general latent factor models.” Applied Mathematical Finance, Vol. 10, pp. 337-357.
    Description: 碩士
    國立政治大學
    統計學系
    96354006
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0096354006
    Data Type: thesis
    Appears in Collections:[統計學系] 學位論文

    Files in This Item:

    File SizeFormat
    index.html0KbHTML2362View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback