English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113313/144292 (79%)
Visitors : 50947314      Online Users : 953
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 理學院 > 應用數學系 > 學位論文 >  Item 140.119/94846
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/94846


    Title: 均勻C超圖的最大邊數
    Authors: 劉逸彰
    Contributors: 張宜武
    劉逸彰
    Keywords: 均勻C超圖
    Mixed C-hypergraph
    Date: 2009
    Issue Date: 2016-05-09 11:58:18 (UTC+8)
    Abstract: 超級混合圖是一個 H = (X,C,D) 的表示法,其中X是代表點集合,而C和D是X的部分子集合,稱為邊。一個嚴格k種顏色可著色法指的是由X的點集對應到{1,2,…,k}的一種關係,其中C代表每一個C邊至少有兩個點同色,而D代表每一個D邊至少有兩個點不同色。C和D都有可能是空集合。假如超過(少於)k並沒有可著色的方法數,則k稱為最大著色數(最小著色數)。而H的每個邊都恰好有r個點則稱為r均勻超級混合圖。
    對於r均勻C超級混合圖,如果限定了最大著色數大於等於k的話,則將會改變最大著色數的邊數。如果要找出滿足此條件的最大著色數的最大的邊數,我們主要區分成三種不同的情形來討論,分別是r比k大、r比k小和r = k。
    A mixed hypergraph is a triple H = (X, C,D), where X is the vertex set, and each of C,D is a list of subsets of X. A strict k-coloring is a onto mapping from X to {1,2, . . . , k} such that each C ∈ C contains two vertices have a common value and each D ∈ D has two vertices have distinct values. Each of C,D may be empty. The maximum(minimum)
    number of colors over all strict k-colorings is called the upper(lower) chromatic number of H and is denoted by χ^¯(H)(χ(H)). If a hypergraph H has no multiple edges and all its
    edges are of size r, then H is called an r-uniform hypergraph. We want to find the maximum number of edges for r-uniform C-hypergraph of order n with the condition χ^¯(H) ≥ k, where k is fixed. We will solve this problem according to three different cases, r < k, r = k and r > k.
    Abstract ............................i Introduction...........................1
    2 Basic concepts on mixed hypergraph coloring...........................3
    3 Maximum number of edges of r-uniform C-hypergraphs with n vertices...........................5
    4 The minimum number of edges of 2-uniform C-hypergraphs with n vertices...........................21
    5 References..................................24
    Reference: [1]M. Gionfriddo, L.Milazzo, and V. Voloshin, On the upper chromatic index of a multigraph, Computer Science J. Moldova 10(2002), 81-91.
    [2]T. Jiang, D. Mubayi, Z. Tuza, V. Voloshin, and D. West, The chromatic spectrum of mixed hypergraphs, Graphs Combin. 18(2003), 309-318.
    [3]V. Voloshin, On the upper chromatic number of a hypergraph, Australasian J. Comb. 11(1995), 25-45.
    [4]V. Voloshin, (2002), Coloring Mixed Hypergraphs: Theory, Algorithms and Applications, American Mathematical Society.
    Description: 碩士
    國立政治大學
    應用數學系
    94751005
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0094751005
    Data Type: thesis
    Appears in Collections:[應用數學系] 學位論文

    Files in This Item:

    File SizeFormat
    index.html0KbHTML2197View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback