Loading...
|
Please use this identifier to cite or link to this item:
https://nccur.lib.nccu.edu.tw/handle/140.119/94773
|
Title: | 最低保證給付人壽保險附約之風險分析 Risk analysis for guaranteed minimum benefit life insurance riders |
Authors: | 李一成 |
Contributors: | 張士傑 李一成 |
Keywords: | 最低保證給付 投資帳戶餘額不足機率 有限差分法 Guaranteed minimum benefit Ruin probability Numerical PDE solution |
Date: | 2008 |
Issue Date: | 2016-05-09 11:51:42 (UTC+8) |
Abstract: | 保險人因提供最低保證給付之投資型商品,使公司亦涉入投資風險。本研究旨在探討最低保證給付人壽保險附約之風險分析。首先利用隨機模型建構投資者帳戶價值的動態過程,進而推導出在未來時點帳戶發生餘額不足之機率及其所符合的偏微分方程式。並藉由數值方法-有限差分法,求出投資帳戶餘額不足之機率。最終,以不同的參數選取之下,進行敏感度分析,探討參數值的設定對於帳戶發生餘額不足之機率的影響。本研究結果可以提供保險公司與監理機關,作為日後發行保證給付商品時,一項風險管理上的考慮因素。 研究結果可以歸納為兩點結論: 1. 在市場因素中,投資帳戶連結之標的報酬率與帳戶餘額不足機率呈現反向變動,而波動度則是與帳戶餘額不足機率呈現正向變動。在兩因素同時考慮下,當報酬率愈高且波動度愈低,投資帳戶發生餘額不足的機率會愈低。當波動度愈高且報酬率愈低時,帳戶餘額不足機率則會愈高。其兩者的力量會相互抵銷,對投資帳戶餘額不足之機率的影響需視何者的力量較強而定。
2. 在條款設計的因素中,保證附約相關費用率、保證提領比率與保證提領期間對於投資帳戶發生餘額不足機率的影響皆呈現正向的關係。而投資帳戶期初的價值則與帳戶餘額不足機率呈現反向變動。其中保證提領比率對於投資帳戶的價值影響最大,其帳戶餘額不足機率之變動百分比相較於其他因素而言,變動幅度較大,範圍皆大於4%以上,甚至高達37.11%。 Insurers have investment risks because they issue the guaranteed minimum benefit life insurance riders. Therefore, the purpose of this thesis is analyzing the risk for the riders. In the context, we implement numerical PDE solution to compute the ruin probability of separate account which is the probability that guaranteed minimum benefit life insurance riders will lead to financial insolvency under stochastic investment returns. Moreover, we will do sensitivity analyses to discuss the two aspects, market factors and contract designs, how to influence the ruin probability.
Finally, we conclude two main results:
1. For market factors, the rate of investment return is negatively related to ruin probability; however, the volatility is positive correlation.
2. For contract designs, the results show negative correlation between ruin probability and insurance fee, withdrawals, and withdrawal period. But the initial account value shows positive correlation. |
Reference: | 1. Aase, K.K., and Persson, S.A., 1994, Pricing of Unit-linked Life Insurance Policies. Scandinavian Actuarial Journal 1, 26-52. 2. Aase, K.K., and Persson, S.A., 1997, Valuation of the Minimum Guaranteed Return Embedded in Life Insurance Contracts. Journal of Risk and Insurance 64 (4), 599-617. 3. Albrecht, P., and Maurer, R., 2002. Self-annuitization, Consumption Shortfall in Retirement and Asset Allocation: The Annuity Benchmark. Journal of Pension Economics and Finance 1 (2), 57–72. 4. Bacinello, A.R. and Ortu, F., 1993, Pricing Guaranteed Securities-linked Life Insurance under Interest Rate Risk. Actuarial Approach for Financial Risks, 35-55. 5. Bacinello, A.R. and Ortu, F., 1994, Single and Periodic Premiums for Guaranteed Equity-linked Life Insurance under Interest Rate Risk: the "Lognormal+Vasicek" Case, Financial Modeling, L. Peccati and M. Viren (Eds.), Physica-Verlag, Heidelberg, Germany, 1-25. 6. Black, F. and Scholes, M., 1973, The Pricing of Options and Corporate Liabilities. Journal of Political Economy 81, 637-654. 7. Boyle, P.P., Schwartz, E., 1977. Equilibrium Prices of Guarantees under Equity-linked Contracts. Journal of Risk and Insurance 44(2), 639–680. 8. Boyle, P.P. and Schwartz, E.S., 1997, Equilibrium Prices of Guarantees under Equity-linked Contracts. Journal of Risk and Insurance 44, 639-680. 9. Boyle, P.P. and Hardy, M.R., 1997, Reserving for Maturity Guarantees: Two Approaches. Insurance: Mathematics and Economics 21, 113-127. 10. Boyle, P.P. and Hardy, M.R. 2003, Guaranteed Annuity Options. Astin Bulletin 33 (2), 125-152 11. Brennan, M.J., and Schwartz, E.S., 1976. The Pricing of Equity-linked Life Insurance Policies with an Asset Value Guarantee. Journal of Financial Economics 3 (1), 195–213. 12. Brennan, M.J. and Schwartz, E.S., 1979, Alternative Investment Strategies for the Issuers of Equity-linked Life Insurance Policies with an Asset Value Guarantee, Journal of Business 52, 63-93. 13. Duffy, D.J., 2006, Finite Difference Methods in Financial Engineering: A Partial Differential Equation Approach, 1st ed., Hoboken, NJ: John Wiley & Sons. 14. Hardy, M.R. 2000, Hedging and Reserving for Single-premium Segregated Fund Contracts. North American Actuarial Journal 4 (2), 63-74. 15. Hardy, M.R., 2003, Investment Guarantees: Modeling and Risk Management for Equity-linked Life Insurance. 1st ed., Hoboken, N.J.: Wiley. 16. Huang, H., Milevsky, M.A., Wang, J., 2004. Ruined Moments in Your Life: How Good are the Approximations? Insurance: Mathematics and Economics 34 (3), 421-448 17. London, J., 2005, Modeling Derivatives in C++, 1st ed., Hoboken, N.J.: J. Wiley. 18. Milevsky, M.A., 1997. The Present Value of a Stochastic Perpetuity and the Gamma Distribution. Insurance: Mathematics and Economics 20, 243–250. 19. Milevsky, M.A., 1998. Optimal Asset Allocation towards the end of the Life Cycle: To Annuitize or not to Annuitize? Journal of Risk and Insurance 65 (3), 401–426. 20. Milevsky, M.A., 1999. Martingales, Scale Functions and Stochastic Life Annuities: A Note. Insurance: Mathematics and Economics 24 (1–2), 149–154. 21. Milevsky, M.A., and Robinson, C., 2000. Self-annuitization and Ruin in Retirement. North American Actuarial Journal 4, 113–129. 22. Milevsky, M.A. and Posner, S., 2001, The Titanic Option: Valuation of Guaranteed Minimum Death Benefits in Variable Annuities and Mutual Funds. Journal of Risk and Insurance 68 (1), 55-79 23. Milevsky, M.A., Salisbury, T.S., 2006. Financial Valuation of Guaranteed Minimum Withdrawal Benefits. Insurance: Mathematics and Economics 38, 21-38 24. Morton, K.W., and Mayers, D.F., 2005, Numerical Solution of Partial Differential Equations: An Introduction, 2nd ed., England: Cambridge University Press. 25. Nielsen, J.A. and Sandmann, K., 1995, Equity-linked Life insurance: A Model with Stochastic Interest Rates. Insurance: Mathematics and Economics 16, 225-253. 26. Nielsen, J.A. and Sandmann, K., 1996, Uniqueness of the Fair Premium for Equity-linked Life Insurance Contracts. The Geneva Papers on Risk and Insurance Theory 21, 65-102. 27. Shreve, S., 2004. Stochastic Calculus for Finance II: Continuous-time Models. 1st ed., New York: Springer. 28. Smith, G.D., 1985, Numerical Solution of Partial Differential Equations: Finite Difference Methods, 3rd ed., New York: Oxford University Press. 29. Wilmott, P., Dewynne, J.N., Howison, S., 1993, Option Pricin : Mathematical Models and Computation, 1st ed., England: Oxford Financial Press. 30. Wilmott, P., Dewynne, J.N., Howison, S., 1995, The Mathematics of Financial Derivatives: A Student Introduction, 1st ed., New York: Cambridge University Press. 31. Young, V.R., 2004. Optimal Investment Strategy to Minimize the Probability of Lifetime Ruin. North American Actuarial Journal 4, 106–126. |
Description: | 碩士 國立政治大學 風險管理與保險研究所 95358001 |
Source URI: | http://thesis.lib.nccu.edu.tw/record/#G0095358001 |
Data Type: | thesis |
Appears in Collections: | [風險管理與保險學系] 學位論文
|
Files in This Item:
There are no files associated with this item.
|
All items in 政大典藏 are protected by copyright, with all rights reserved.
|