Reference: | 中文部份
1. 陳松男,金融工程學-金融商品創新與選擇權理論,新陸書局
2. 陳松男,利率金融工程學-理論模型及實務應用,新陸書局
3. 陳松男,結構型金融商品之設計及創新,新陸書局
4. 陳松男,結構型金融商品之設計及創新(二),新陸書局
5. 莊筑豐,連動式債券設計個案研究-固定期限交換利率利差連動與
信用連結債券,政大金融研究所碩士論文(民國94 年)
6. 趙子賢,市場模型下利率連動債券評價-以逆浮動、雪球型、及每日
區間型為例,政大金融研究所碩士論文(民國94 年)
7. 曹若玹,可贖回雪球式商品的評價與避險,政大金融研究所碩士
論文(民國95年)
英文部分
1. Brace, A., D. Gatarek and M. Musiela (1997). The Market Model of Interest Rate . Dynamics Mathematical Finance 7, 127-155.
2. Brigo, D. and F. Mercurio (2001). Interest Models, Theory and Practice. Springer-Verlag.
3. Glasserman, P. (2004). Monte Carlo Method in Financial Engineering. New York,Springer.
4. Longstaff, F. and Schwartz, E. (2001).Valuing American Options by Simulation: A Simple Least-Squares Approach. The Review of Financial Studies, Vol. 14, No.1, pp. 113-147.
5. Piterbarg.V.V.(2003). A Practioner’s Guide to Pricing and hedging Callable Libor Exotics in Forward Libor Models, SSRN Working Paper
6. Piterbarg.V.V.(2004b). Pricing and Hedging Callable Libor Exotics in Forward Libor Models. Journal of Computational Finance 8(2),65-117.
7. Rebonato, R. (1998). Interest Rate Option Models. Second Edition. Wiley,Chichester.
8. Rebonato, R.(1999). On the Simultaneous Calibration of Multifactor Lognormal Interest Rate Models to Black Volatilities and to the Correlation Matrix, The Journal of Computational Finance,2 5-27.
9. Rebonato, R. (2002), Modern Pricing of Interest-Rate DerivativesL:The LIBOR Market Model and Beyond; Princeton University. Press, Princeton.
10. Shreve, S. (2004). Stochastic Calculus for Finance II, Springer-Verlag, New York.
11. Svoboda, S. (2004). Interest Rate Modelling , Palgrave Macmillan, New York.
12. Paolo, B. (2002), Numerical Methods in Finance: A MATLAB-Based Introduction
13. Musiela, M. and Rutkowski, M. (2002). Martingale Methods in Financial Modelling |