政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/90574
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  全文筆數/總筆數 : 115393/146433 (79%)
造訪人次 : 54945463      線上人數 : 328
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    政大機構典藏 > 理學院 > 應用數學系 > 學位論文 >  Item 140.119/90574
    請使用永久網址來引用或連結此文件: https://nccur.lib.nccu.edu.tw/handle/140.119/90574


    題名: SOME PERMUTATION BINOMIALS and WEAK CARLITZ`S CONJECTURE
    作者: 黃培琨
    貢獻者: 陳永秋
    黃培琨
    日期: 1989
    上傳時間: 2016-05-04 14:31:21 (UTC+8)
    摘要: 論文提要內容:
    壹 引言.
    近年來,訊號傳送的途徑,已擺脫了傳統上著重管線傳送的優勢;有愈來愈多的訊號彌漫在廣闊的空間裡,而這種無線式的傳送所需面臨的問題是:不具有排他性.任何有接收器材的非原始接收者都可以截聽到訊息,由此因應而生的保密技術格外受矚目.密碼學(Cryptography)便是滿足此需要的學問.本論文所探討的排列多項式(Permutation Polynomial)是密碼學中重要的工具之一.
    貳 論文主體.
    所謂排列多項式,即是佈於代數體上的多項式,把此多項式當成函數而作用於代數體(Field)上,如果此函數據有一對一的性質,則是排列多項式.即f(x)=a_0+a_1 x1+⋯+a_n xn ϵ Fq[X] 且f(a)≠f(b),a,bϵFq,a≠b.在論文中,介紹先進學者對排列多項式的認識.如:Lagrange’s interpolation是利用函數值來描繪多項式.著名的學者Carlitz,利用特殊多項式來合成出排列多項式,論文中有更進一步的合成法提出.而Hermite跟Dickson學者則提出f^t函數其冪次的變化情形,來判別排列多項式之是否,是最通俗的判別理論.
    此外,由吾人所蒐集的資料中發現,在祇有兩項的多項式中,被發現到其他更簡捷快速的判別方法,故二項式的多項式的探討是本論文的第一主題.對於xk+bxJ ϵ Fq[X],給予固定類型的q,k,j情形下,祇須檢定b是否具特殊性質就可決定是否為排列多項式,這是一種方法,另有學者並不固定q,k,j,反而從q,k,j數字下手,找尋出某種關連性,其結果使得係數b,只有當b=0時才有機會是排列多項式,剩下單項式的判別過程,就很容易了.上述兩方法本論文網羅大部份有關論文,綜合各家之長,並適當給予不同於原作者的新觀點證明方法.
    至於本論文第二主題是著名的Carlitz`s conjecture.此預測敘述:對於任何具有最高冪次是偶數的多項式,必定存在一個自然數k,使得給定的代數體,其元素各數只要超過k,則此多項式必定不是排列多項式.此預測當degree n=10,12,14 and 2^m時已被證實為真.本論文僅就n=2^m,做系統地探討及重新證明.另外由[2],[8]和[9]中,不難發現在特殊多項式族的限制之下,自然數k存在的機率更大,甚至可給出一個bound.故本論文提出weak Carlitz’s conjecture的概念;至於bound的問題:如多項式族{x^o+ax^J ∣j=0,1,2,3,4,5,6,7}.由[2]及[3]幾乎可得到最小之bound,可惜仍功虧一簣.最後,本論文提供估算bound的一個方法,以改善[8]中之bound.
    參 結語.
    本論文所論的兩主題,對於佈於代數體上的多項式是否為排列多項式,在判別的過程上應有相當的助益才是
    參考文獻: References
    [1] L. Carlitz, Permutations in a finite field,Acta Sci.Math. Szeged, 24 (1963) 196-203.
    [2] S. R. Cavior, A note on octic permutation polynomials,Math.Comp.,17(}963)450-452.
    [3] W. S . Chou , Binomial permutations of finite fields,Bull.Austral.Math.Soc. ,Vol.38 (1988) 325-327 .
    [4] D. R. Hayes, A geometric approach to permutation polynomials over a finite field, Duke Math.J., 34 (1967)293-305.
    [5] H. Lausch and W. Nbbauer,Algebra of Polynomials,North-Holland, Amsterdam, 1973.
    [6] R. Lidl and C .L. Mullen, When does a polynomial over a finite field permute the elements of the field? The American Math.Monthly, Vol.95 No.3 (1988) 243-246.
    [7] R. Lidl and H. Niederreiter,Finite fields,Encyclopedia Math.Appl.,Vol.20.Addison-Wesley,Reading,Mass 1983 (now distributed by Cambridge Univ. Press).
    [8] R. A. Mollin and C. Small, On permutation polynomials over finite fields, Internat. J. Math. and Math. Sci.,10(1987) 535-544.
    [9] H. Niederreiter and K. H. Robinson, Complete mappings of finite fields,J. Austral. Math. Soc.,Ser. A 33 (1982)197-212.
    [10] W. M. Schmidt, Equations over Finite Fields (Lecture Note in Math., Vol.536, Springer-Verlag, Berlin-Heidelberg-New York, 1976 ).
    [11] Daqing Wan, On a conjecture of Carlitz, J. Austral. Math. Soc., Ser. A 43 (1987) 375-384.
    描述: 碩士
    國立政治大學
    應用數學系
    資料來源: http://thesis.lib.nccu.edu.tw/record/#B2002005818
    資料類型: thesis
    顯示於類別:[應用數學系] 學位論文

    文件中的檔案:

    檔案 大小格式瀏覽次數
    index.html0KbHTML2565檢視/開啟


    在政大典藏中所有的資料項目都受到原著作權保護.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋