Reference: | [1] Adichie,J.N (1967) "Estimates of regression coefficients based on ranks
tests." A.M.S., 38 ,894-904.
[2] Bauer, D.P. (1961) "Contructing confidence sets using rank statistics." J.A.S.A., 67, 687-690.
[3] Gibbon, F.A. (1971) Nonparametric Statistical Inference. New York McGraw-Hill.
[4] Hajek, J. & Sidak. Z. (1967) Theory of Rank Tests. New York: Academic press
[5] Hann, E. J. (1956) "The asymptotic powers of certain tests based on multiple correlations." Journal of the Royal Statistical Society, B18, 227-233.
[6] Hettmansperger, T.P. & Mckean. J.W. (1977) " A robust alternative based on ranks to least squares in analysising the linear model." Technometrics,275-284.
[7] Hodges, J. L. , Jr. and Lehmann, E. L. (l963.l .. Estimates of location based on rank tests" A.M.S., 34, 598-611
[8] Jaeckel L.A. (972) "Estimating regression coefficients by minimizing the dispersion of residuals." A.M.S., 43, 1449-1458
[9] Johnson. R.A. & Wichern D.W. Applied Multivariate Satistical Analysis.
[10] Jureckova. J. (1969) "Asymptotic linearity of a rank statistic in regression parameter." A.M.S., 40, 1889-1900.
[11] Jureckova. J. (1971a) "Honparametric estimate of resgresssion coefficients" A.M.S., 42, 1328-1338
[12] Jureckova, J. (1971b) "Asymptot ic independence of rannk test statistic for testing symmetry on regression" Sankhya, A33, 1-18
[13] Mckean, J.W. & Hettmansperger, T.P. (976) "Tests of hypothesis in general linear model based on ranks" Communication in statistic, A5(8), 693-709
[14] Montgomery,D.C. (1984) Design & Analysis of Experiment (2nd ed). New York: John Willy.
[15] Schrader,R.M. & Mckean,J.W. "Robust Analysis of Variance." Communication in statistic, A6, 879-894.
[16] Searle, S.R. (1971) Linear model. New York: Jhon Willey
[17] Sen, P.K. (1966) "On a distribuyion-free method of estimating asymptocic efficifncy of a class of nonparametric tests." A.M.S., 37 ,1759-1770.
[18] Van Eden, C. (1972) "An analogue for signed rank statistics, of Jreckova`s asymptotic linearity theorem for rank statistics" A.M.S. 43, 791-802. |