Reference: | References
[1] Archer, N. P. (1982). "Maximum Likelihood Estimation with Weibull Models When the Data Are Grouped". Commun. Statist. --Theor.Meth., 11(2),199-207.
[2] Artamonovskii, V. P. (1988). "On Maximum Likelihood Estimation of the Shift and Scale Parameters Based on Grouped Samples".Theory of Prob. and its Appl., 33, 705-708.
[3] Curtis, F. G. and Patrick, O. W. (1984). "Applied Numerical Analysis". Addison-Wesley, Reading, Mass. 3rd ed.
[4] Dempster, A. P., Laird, N. M .. and Rubin, D. B. (1977). "Maximum Likelihood From Incomplete Data via the EM Algorithm". J. Roy.Statist. Soc. Ser. B 39, 1-38.
[5] Hasselbland, V., Stead, A. G. and Galke, W. (1980) . "Analysis of Coarsely Grouped Data From the Lognormal Distribution". J. Amer.Statist. Ass, 75, 771-779.
[6] Heitjan, D. F. (1989). "Inference From Grouped Continuous Data: A Review". Statist. Science, 4,164-181.
[7] James C. Fu (1989). "Method of Kim-Zam : An Algorithm for Computing the Maximum Likelihood Estimator". Statistics and Probability Letters, 8, 289-296.
[8] James C. Fu and Lung-An Li (1990). "Method of Pao-Zhuan YinYu : A Method of Stochastic Point Estimation".
[9] McLaren, C. E, Brittenham, G. M. and Hasselblad, V. (1986)."Analysis of the Volume of Red Blood Cells : Application of the Expectation-Maximization Algorithm to Grouped Data From the Doubly-Truncated Lognormal Distribution". Biometrics, 42, 143-158.
[10] Nelson, W. (1982). "Applied Life Data Analysis". Wiley, New York.
[11] Ostrouchov, G. (1988). "Accuracy of Approximate Confidence Bounds Computed From Interval Censored Weibull and Lognormal Data". J. Statist. Comput. Simul. 29, 43-76.
[12] Schader, M. and Schmid, F. (1988). "Small Sample Properties of the MLE of the Parameters μ and σ From a Grouped Sample of a Normal Population". Commun. Statist. -- Simula, 17, 229-239.
[13] Sundberg, R. (1974). "Maximum Likelihood Theory for Incomplete Data From an Exponential Family". Second. J. Statist.,1,49-58.
[14] Wei, D. and Shau, C.K. (1987). "Fitting and Optimal Grouping on Gamma Reliability Data". IEEE Transaction on Reliability, 36, 595-599. |