English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113303/144284 (79%)
Visitors : 50815331      Online Users : 866
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 商學院 > 統計學系 > 學位論文 >  Item 140.119/89644
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/89644


    Title: 論混合常態分配之估計
    Authors: 李瑞蘭
    Contributors: 李隆安
    李瑞蘭
    Date: 1991
    1990
    Issue Date: 2016-05-02 17:02:53 (UTC+8)
    Abstract: 混合模式(mixture m。del) 參數的估計問題,研究迄今已近一世紀,自Pearson (1894) 提出動差法來估計兩個混合常態模式的參數,往後有許多學者繼續這個範疇的研究,且提出他們不同的估計法。而近半世紀以來,混合常態分配被廣泛應用在許多學科的進一步研究分析上,因此,它的參數估計的意義就更顯重要。
    我們欲估計兩個混合常態分配的參數,但原參數空間有識別性的問題,估計參數時會產生Chiang 等人所提的不好的現象,經過適當轉換後的新參數空間,則無識別性的問題。本文第一章簡單地介紹吾師李隆安博士所提的四個空間轉換函數和轉換後所對應的新參數空間。在第二章中,先簡單地介紹一些估計兩個混合常態參數的方法,然後再介紹現今最常用來估計兩個混合常態參數的方法- MLE ,其中包括估計MLE 的EM 演算法、牛頓法和最佳化循序演算法,並將Burnham (1988) 提出求解有限混合分配的最大概似估計值的縮減公式,應用在EM 演算法上,可知道五維參數EM 反覆求解法即三維參數EM 反覆求解法,可以縮減計算問題的大小。同時也介紹拋磚引玉法,其為一精深再抽樣的方法,它有系統的改進原始估計值及估計改進後估計式的變異數。在第三章中,對摸擬所需之資料組、反覆求解的式子和數值問題的解決方法做介紹。第四章中,針對EM法配合求解MLE 的縮減公式和最佳化循序演算法估計所得之兩個混合常態分配參數估計值做分析,並做原參數空間和新參數空間上EM 法收斂快慢的比較;此外並將應用拋磚引玉法,取一些特殊形式的統計量來估計參數的結果做記錄。 第五章,為結論與進一步研究。
    Reference: Beran,R. (1977), Minimum Hellinger Distance Estimates for Parametric Modles.The Annals of Statistics,5 ,445-463
    Brenton R. Clarke (1989,Feb), An unbiased minimum distance estimator of the proportion parameter in a mixture of two normal distribution. Statistics & Probability Letters. Vol 7, No 4,275-281
    Bryant,J.L. and Paulson,A.S. (1983), Estimating of Mixing Proportions via Distance between Characteristic Functions.Communications in Statistics,A12,1009-1029
    Burnham,K.P.(1988), A Comment on Maximum Likelihood Estimation for Finite Mixture of Distributions.Biom,J. Vol 30, No 3,379-384
    Cassie,R.M. (1954), Some Uses of Probability Paper in the Analysis of Size Frequency Distributions. Austral,J. of Marine and Freshwater Res,5,513-22
    Chiang,C.L. (1951),On the Design of Mass Medical Surveys. Human Biol. 23,242-271
    Choi,K. and Bulgren,W.G. (1968), An Estimation Procedure for Mixtures of Distributions.Journal of the Royal Statistical Society,Ser.B, 30,444-460.
    Cohen,A.C. (1967), Estimation in Mixtures of two Normal Distribution.Technometrics,9,l5-28
    Day, N. E. (1969), Estimating the Components of a Mixture Normal Distributions.Biometrika,56,463-474
    Dempster, A.P., Laird, N.M. and Rubin, D.B. (1977), Maximum Likelihood from Incomplete Data via the EM Algorithm. Journal of the Royal Statistical Society Sere B 39, 1-38
    D.M. Titterington; A.F.M. Smith; U.E. Markov, Statistical Analysis of Finite Mixture Distributions 1985 Wiley NY:UK 243P
    Everitt, B.S. and Hand, D.J. (1981), Finite Mixture Distributions. Chapman and Hall
    Everitt, B.S. (1984), Maximum Likekihood Estimation of the Parameters in a Mixture of Two Univariate Normal Distributions: A Comparison of Different Algorithms.The Statistican,33,205-215
    Fabir. , Rossi, (1983), Decompsition of Mixture Via a Generalized E-M Method.Metron,133-146
    Fisher, R.A. (1922), On the Mathematical Foundations of Theoretical Statistics.reprinted in contributions to Mathematical Statistics (by R.A.Fisher)(1950), J. Wiley & Sons, New York
    Fowlkes, E.B. (1979), Some Methods for Studying the Mixture of Two Normal(Lgnormal) Distributions. Journal of the American StatisticalAssociation, 74,561-575
    Harding, J.P. (1949), The Use of Probability Paper for the Graphical Analysis of Polymodal Frequency Distributions. J. of the Marine Biol. Ass. of the UK, 28, 141-53
    Hathaway, R.J. (1985), A Constrained Formulation of Maximum Likelihood Estimation for Normal Mixture Distributions. The Annals of Statistics,vol 13, No 2,795-800
    Hathaway, R.J. (1986,a), A Constrained EM Algorithm for Univariate Normal Mixtures. Journal of Statistical Computation and Simulation, 23,211-230
    Hathaway, R.J. (1986,b), Another Interpretation of the EM Algorithm for Mixture Distributions. Statistics & Probability Letters,4,53-56
    James C. Fu (1989), Method of Kim-Zam : An Algorithm for Computing the Maximum Likelihood Estimator. Statistics & Probability Letters,8,289-296
    James C. FU, Lung-An Li (1989), Method of Pao-Zhuan-Yin-Yu: A method of Stochastic Point Estimate.
    Kiefer, N.M. (1978), Comment Journal of the American Statistical Associations,December,P 744
    Kiefer, N.M. (1978), Discrete Parameter Variation: Efficient Estimation of a Switching Regression Model. Econometrica 46, 427-434
    Kumar,K.D., Nicklin,E.H.,and Paulson,A.S. (1979), Comment on `Estimating Mixtures of Normal Distributions and switching Distributions` by Quandt and Ramsey. Journal of the American Statistical Association, 74,52-55
    Liang,W. (1989), Strong Consistency of Constrained Maximum Likelihood Estimator of Finite Normal Mixture. Bulletin of Institute of Mathematics Academia Sinica, Vol 17, No 4,299-304
    Louis,T.A. (1982), Finding the Observed Information Matrix When Using the EM Algorithm. Journal of the Royal Statistical Society, Ser.B 44,226-233
    Macdonald,P.D.M. (1971), Comment on `An Estimation Procedure for Mixture of Distributions` by Choi and Bulgren. Journal of the Royal Statistical Society, Ser.B,33, 326-329
    Pearson,K. (1894), Contribution to the Mathematical Theory of Evolution.Philosophical Transactions of the Royal Society of London,Ser.A, 71-110
    Quandt,R.E. and Ramsey,J.B. (1978), Estimating Mixtures of Normal Distributions and Switching Regressions. Journal of the American Statics tical Association 73, 730-738
    Robertson,C.A. and Fryer,J.G. (1972), A Comparison of Some Methods for Estimating Mixed Normal Distributions. Biometrika,59,639-648
    Tan,W.Y. and Chang,W.C. (1972), Some Comparisons of Method of Moments and the Method of Maximum Likelihood in Estimating Parameters of a Mixture of Two Normal densities. J.Amer Statist Assoc. 67,702-708
    Woodward,W.A., Parr,W.C., Schucany, W.R., and Lindsey,H (1984), A Comparison of Minimum Distance and Maximum Likelihood Estimation of a Mixture Proportion.
    Wu,C.F.J. (1983), On the Convergence Properities of the EM Algorithm. The Annals of Stastistics,Vol 11, No 1, 95-103
    李友錚(1985),利用最小Hellinger距離估計混合模式的參數,清大工業工程碩士論文
    劉培熙(1987),最小距離估計法應用於離散機率分配混合模式之研究,清大工業工程所碩士論文
    黃瓊玉(1990),論混合常態之可識別性,政大統計所碩士論文
    Description: 碩士
    國立政治大學
    統計學系
    Source URI: http://thesis.lib.nccu.edu.tw/record/#B2002005031
    Data Type: thesis
    Appears in Collections:[統計學系] 學位論文

    Files in This Item:

    File SizeFormat
    index.html0KbHTML2315View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback