Reference: | Brockett,R.W. (1976). Volterra series and geometric control theory, A`utomatica
,Vo1.12,167-176.
Chin,L. C. (1985). vVhat is biostatistics? ,Biometrics,41 ,771-775.
Chan,D.Y.C. & Prager,D.(1991).Analysis of time series by neural networks:
IEEE,355-360.
De Gooi.jer,J.G.& Kumar,K.(1992).Some recent developments in nonlinear
time series lllodelling,testing and forecasting.International Journal of
Forecasting ,8,135-156.
Farrugia,S., Yee,H.& Nickolls,P.,( 1991) .Neural networks classification of intracardiac
ECGS,JEEE~1278-1283.
Gedeon,T.D. & Harris,D.(1991).Creating robust networks,JEEE, 2553-2557.
Ghosh,J.) Deuser) L. wI. & Beck,S. D. (1992). A nerual network based
hybird systen1 for detection, characterization , and classification of
short-duration oceanic signals, IEEE Journal Of Oceanic Engineer`
lng ,Vo1.17 No.4 October , 351-363.
Gorman,R.P. & Seinowski,T.J. (1988).Analysis of hidden units 1Il a layered
netwok trained to classify sonar targets,Neural Networks,Vo1.1,75-89.
Granger,C.vV.J.& Anderson)\\.P.(1978).An Introd`uction to Bilinear Ti`me Series
M odels,Vandenhoeck and Ruprecht,Gottingent.
Granger,C."\\;V.J.(1991).Developments in the nonlinear analysis of econoillic
series.Scand.1. of Econo`mics,93(2) ,263-276.
Guegan,D & Phalll,T.D.(1992).Power of the score test against bilinear tilDe
series models.Statistica Sinica,Vo1.2))57-169.
Kanaya,F.& IVIiyake,S.(1991).Bayes statistical behavior and valid generalization
of pattern classifying neural networks, IEEE transactio`f1 on N e`ural
lVetworks,Vo1.2,No.4,J uly,4 71-475.
Ljung,G.:NI. (1978). On a lneasure of lack of fit In tilne senes l1lodels
Bio`me tries, Vol. 65,297 -303.
Lipplllann,R .P. (1989). Pattern classification uSIng neural net-
works IEEE Corn;munication Magazine.
Mohler ,R. R. (1973). Bilinear control processes ,Acaclenlic Press, New Yorkand London.
Robert,J.S.(1992).Pattern Recognition.
Ruberti,A.,Isidori A. & d`Allessanclro,P.(1972). Theory of bilinear dynam,ical
system,Springer Verlag,Berlin.
Shulllway,R.H.(1988).Applied Statistical Ti`me Series Ana.lysis.
Shibata,R.(1976). Selection of the order of an autoregressive nlodel by
akaike`s infonnation criterion ,Biometrics, Vol.63(1) , 117.
Saikkonen,P.& Luukkonen,R.(1988). Lagrange multiplier tests for testing
nonlineari ties in time series lllodeis ,S cand J oural of Statistics, 55-68.
Saikkonen, P. & Luukkonen,R. (1988).Power properties of a tilne series linearity
test against SOllle simpe bilinear alternatives,Statistica Sinica,453-464.
Subba Rao,T. & Gabr,NI.NI.(1984).An Introduction to Bispectral Analysis and
Bilinear Time Series Nlodels;Springer- Verlag,Berlin.
Terence, C.NI. (1992) .NIodelling the seasonal patterns in UI( macroeconomic
tilnes series,Journal of Royal Statistical Society ,61-75.
Tsay,R.S. (1991) .Detecting and modeling nonlinearity in univariate tinle series
analysis,Statistica Sinica,431-451.
Takayuki, Y.,Tetsuro, Y.(1992).Neural networks controller USlllg autotun-ing
methodfor nonlinear function,IEEE Transcation on N ev:ral JVetworks,
3( 4), 595-601.
Tong,H.& Lim,I(.S. (1980).Tlueshold autoregressioIl,limit cycles and cyclical
data. l.Roy. Statist. Soc.Ser.B,42)45-292.
\\iVeigend,A.S.& Rumelhart,D.E.(1991).The effective dilnention of space of
hidden U nits,IEEE,2069-207 4.
Yee E. & Ho J.( 1990). Neural nenwork recognition And classification of
aecrosol distri butions nleasured with a two-spot laser velocimeter ,A pplied
Opiics ,2929-2938.
Zaknich,A. & Attikiouzel,Y. (1991) . A 1110dified probabilistic neural network
(PNN) for nonlinear ti111e series analysis, IEEE ,1530-1535. |