数据加载中.....
|
请使用永久网址来引用或连结此文件:
https://nccur.lib.nccu.edu.tw/handle/140.119/87304
|
题名: | 模糊統計分類及其在茶葉品質評定的應用 Analysis fuzzy statistical cluster and its application in tea quality |
作者: | 林雅慧 Lin, Ya-Hui |
贡献者: | 吳柏林 謝邦昌 Wu, Berlin Shia, Ben-Chang 林雅慧 Lin, Ya-Hui |
关键词: | 群落分析 隸屬度函數 模糊評鑑表 模糊權重 加權模糊分類法 Cluster analysis Membership function Fuzzy judgement table Fuzzy weight Weighted fuzzy clustering method |
日期: | 1996 |
上传时间: | 2016-04-28 11:48:33 (UTC+8) |
摘要: | 模糊理論開始於 1960 年代中期,關於這方面的研究與發展均已獲得相當不錯的成果.其中尤以在群落分析應用上的專題研究更是廣泛.Bezdek 提出的模糊分類演算法,乃根據 Dunn 的C平均法所作的一改良方法.但仍有其缺點,例如,未考慮權重且以靜態資料為主. 有鑑於此,本研究對 Bezdek 之方法加以改進推廣,提出加權模糊分類法.對於評價因素為多變量時,應加入模糊權重的考量.此外更結合時間因素,使準則函數成為動態的模式,將傳統的模糊分類法由靜態資料轉為動態資料形式,以反映真實 Research on the theory of fuzzy sets has been growing steadily since itsinception during the mid-1960s. The literature especially dealing with fuzzycluster analysis is quite extensive. But the research on FCM still has somedisadvantages. For instance, the |
參考文獻: | 吳柏林(1994) 時間數列的圓形識別與分類。國立編譯館館刊,第23卷,第2期,頁317-344 。 吳振鐸(1964) 茶葉品質鑑定與茶湯中總多元的類及花青素含量之相關研究。平鎮:茶葉試驗所報告第19號。 吳振鐸(1973) 從茶湯之化學成分談台灣茶葉品質之改進。台灣農業季刊,第9卷,第1期,頁194-198。 陳國任、謝邦昌(1996) 集群分析在製茶品質分類之應用。台灣茶業研究彙報,(付印中) 。 Bezdek, J. C. (1972) Feature selection for binary data - medical diagnosis with fuzzy sets. in Proc. Nat. Comput Conf , AFIPS Press , pp. 1057-1068. Bezdek, J. C. (1981) Pattern Recognition with Fuzzy Objective Function Algorithms. New York: Plenum. Bezdek, J. C. (1983) Some recent application of fuzzy c-means in pattern recognition and image processing. IEEE 1983 Workshop 011 Languages for Automatioin, IEEE Computer Society, pp . 247-252. Bezdek, J. C. (1983) Statistical pattern recognition systems. Boeing Aerospace. Kent . WA, Tech. Rep. TR-SC8300 1-004. Bezdek, J. C. and Solomon, K. (1981) Simulation of implicit numerical characteristics using small samples. in Proc. ICASRC 6. New York : Pergamon, pp. 2773 -2784 . Bezdek, J. C. et. al. (1981) Fuzzy clustering g: a new approach for geostatistical analysis . Int. J. Syst. Meas. Decision , Vol. 1, pp. 13 -23 . Calbert, M. Y. and Merlushkin, A. I. (1994) Evaluating the parameter based on a contaminated sample. Nauchno-Tekhnicheskaya Informatsiya, Serial 2, 28 , 26-36. Cannon, R. L. and .Jacobs, C. (1984) Multispectral pixed classification With fuzzy objective functions . Cen. for Automation Res. , Univ. Maryland , College Park, Tech. Rep CAR-TR-51. Cannon, R. L. , Dave, J . V. and Bezdek, J. C. (1986) Efficient implementation of the fuzzy c-means clustering algorithms. IEEE Transactions on Pattern Analysis and Machine Intelligence , Vol. PAMI -8, No.2, pp . 248-255. Dunn, J. C. (1974) A fuzzy relative of the ISODATA process and its use in detecting compact, well -separated clusters . J. Cybern ., Vol. 3, pp. 32-57. Harris, T. R. , Stoddard, S. W. and Bezdek, J. C. (1993) Application of fuzzy-set clustering for regional typologies . Growth and Change, Vol. 24, pp . 155 - 165 . Huggins, V. J. (1983) Computing Maximum-Likelihood Estimates for Normal Mixtures. University of South Carolina . M. S. Thesis Kissiov, V. T. and Hadjitodorov, S. T. (1992) A fuzzy version of K-NN method. Fuzzy Sets and Systems, Vol. 49, pp . 323-329. Klir, G. J. and Yuan, B. (1995) Fuzzy Sets and Fuzzy Logic - Theory and Applications. Prentice-Hall , Upper Saddle River, NJ. Manski , C. F. (1990) The use of intentions data to predict behavior: a best-case analysis. JASA , Vol. 85, No. 412, pp. 934-940. Mukherjee, D. P. et. al. (1995) Water quality analysis: a pattern recognition approach. Pattern Recognition, Vol. 28, No.2, pp. 269-281 . Narazaki , H. and Ralescu, A. L. (1994) Iterative induction of a category membership function. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems , Vol. 2, No. 1, pp . 91-100 . Pal, N. R. and Bezdek, J. C. (1995) On cluster validity for the fuzzy c-mea ns model, IEEE Trans. Fuzzy Systems, Vol. 3, No.3 , pp. 370-379 . Park, K. S. and Kim, S. H. (1996) A note on the fuzzy weighted additive rule. Fuzzy Sets and Systems, Vol. 77 , pp . 315-320 . Ramakrishnan, R. and Rao, C. J. M. (1992) The fuzzy weighted additive rule. Fuzzy Sets and Systems, Vol. 46, pp. 177- 187. Roberge, P. R. (199 5) A knowledge-based framework for planning non-destructive evaluation . Expert Systems, Vol. 12, No. 2, pp . 10 7- 11 2. Romer, C. and Kandel, A. and Backer, E. (1995) Fuzzy partitions of the sample space and fuzzy parameter hypotheses. IEEE Transs. Systems, Man and Cybernet., Vol. 25 , No.9, pp . 13 14- 132 1. Ross , T. J. (199 5) Fuzzy Logic with Engineering Applications. Sato, M. and Sato, Y. ( 1994) On a multi criteria fuzzy clustering method for 3-way data. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, Vol. 2, pp. 127-142. Uhrmacher, A. M. (1995) Reasoning about changing structure: a modeling concept for ecological systems . Applied Artificial Intelligence , Vol. 9, pp . 157- 180. Wang, H. and Bell , P. M. (1996) Fuzzy clustering analysis and multifactorial evaluation for students` imaginative power in physics problem solving. Fuzzy Sets and Systems, Vol. 78 , pp . 95- 105. Watanabe, N. and- Imaizumi , T. (1993) A fuzzy statistical test of fuzzy hypotheses. Fuzzy Sets and Systems, Vol. 53 , pp. 167-178. Windham, M. P. (1 982) Cluster validity for the fuzzy c-means clustering algorithm. IEEE Transactions on Pattern Analysis and Machine Intelligence , Vol. PAMI-4, No. 4, pp. 357-363. Zadeh, L. A. (1965) Fuzzy sets. Information and Control, Vol. 8, pp . 338-353. Zenovich, S. V. (1994) Integration of classification structures. Nauchno-Tekhnicheskaya Informatsiya , Seriya 2, Vol. 28 , No.6, pp. 8-12. |
描述: | 碩士 國立政治大學 統計學系 83354007 |
資料來源: | http://thesis.lib.nccu.edu.tw/record/#B2002002790 |
数据类型: | thesis |
显示于类别: | [統計學系] 學位論文
|
在政大典藏中所有的数据项都受到原著作权保护.
|