政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/86784
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113318/144297 (79%)
Visitors : 51100393      Online Users : 935
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/86784


    Title: 關於非線性微分方程的正則性
    The Regularity of Solutions for Non-linear Differential Equation u`` - u^p = 0
    Authors: 林俊宏
    Lin, Jiunn-Hon
    Contributors: 李明融
    Li, Meng-Rong
    林俊宏
    Lin, Jiunn-Hon
    Keywords: 微分方程
    正則性
    爆破
    爆破速率
    differential equation
    regularity
    blow-up
    blow-up rate
    Date: 1998
    Issue Date: 2016-04-27 16:43:12 (UTC+8)
    Abstract: 本研究中討論了非線性微分方程式之解的正則性。在這之中發現了一些有趣的現象,得到了方程式解可以做任意次的微分,並且得到對該解任意次微分後其值趨近到無限大時之爆破速率、爆破常數及當其值遞減至零時的爆破速率、爆破常數。
    In this paper we work with the regularity of solutions for the non-linear ordinary differential equation u``-u^p=0 for some well-defined functions u^p. We have found some interesting phenomena, u belongs to C^q for any q in positive integer, blow-up constant, blow-up rate, null point and decay rate of u^(n) are obtained in this work, through that we get the characterization for these equations in this case.
    Introduction.
    Chapter 0 The Calligraphy Equation.
    Chapter I The Equation u``-u^p=0, p belogns to positive integer.
    Chapter II The Equation u``-u^p=0, p belongs to rational number.
    Chapter III The Blow-up Rate and Blow-up Constant.
    Appendix Proof of Theorem 5.
    Reference: [1].Bellman. R. Stability Theory Of Differential Equation.McGraw-Hill Book Company. 1953.
    [2].Li, M. R. Nichtlineare Wellengleichungen 2. Ordnung auf beschraenkten Gebieten. PhD-Dissertation Tuebingen 1994.
    [3].Li, M. R. Estimation for The Life-span of solutions forSemi-linear Wave Equations. Proceedings of the Workshop on Differential Equations V. Jan.10-11,1997, National Tsing-hua Uni. Hsinchu, Taiwan.
    [4].Li, M. R. On the Differential Equation u``=u^p, Preprint, 1998.
    Description: 碩士
    國立政治大學
    應用數學系
    86751012
    Source URI: http://thesis.lib.nccu.edu.tw/record/#B2002001689
    Data Type: thesis
    Appears in Collections:[Department of Mathematical Sciences] Theses

    Files in This Item:

    File SizeFormat
    index.html0KbHTML2296View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback