English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113318/144297 (79%)
Visitors : 51043689      Online Users : 885
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 商學院 > 統計學系 > 學位論文 >  Item 140.119/85892
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/85892


    Title: 雙變量脆弱性韋伯迴歸模式之研究
    Authors: 余立德
    Yu, Li-Ta
    Contributors: 陳麗霞
    余立德
    Yu, Li-Ta
    Keywords: 雙變量脆弱性
    Weibull迴歸模式
    對數常態分配
    EM法則
    bivariate frailty
    Weibull regression model
    log-normal distribution
    EM algorithm
    Date: 1998
    Issue Date: 2016-04-21 09:55:08 (UTC+8)
    Abstract: 摘要
    Abstract
    Reference: 參考文獻
    [1] Aalen, O. O., (1988). "Heterogeneity in Survival Analysis",
    Statistics in medicine, vol. 7, p. 1121-1137.
    [2] Aalen, O. O., (1992). "Modeling Heterogeneity in Survival
    Analysis by the compound Poisson distribution", Ann. Appl. Prob.,
    vol. 2, p. 951- 972.
    [3] Clayton, D. G., (1978). "A Model for Association in Bivariate Life
    Tables and Its Application in Epidemiological Studies of Familial
    Tendency in Chronic Disease Incidence", Biometrika, vol. 65, p.
    141-151.
    [4] Clayton, D. G., and Cuzick, J., (1985). "Multivariate Associations of
    The Proportional Hazards Model", Journal of the Royal Statistical
    Society, Ser. A vol. 148, p. 82-108.
    [5] Clayton, D. G., (1991). "A Monte Carlo Method for Binary
    Inference in Frailty Models", Biometrics, vol. 47, p. 467-485.
    [6] Gail, M. H., Wieand, S. and Piantados, S., (1984). "Biased
    Estimates of Treatment Effect in Randomized Experiments with
    Nonlinear Regression and Omitted Covariates", Biometrika, vol. 71,
    p. 431-444.
    [7] Gilks, W. R., Best, N. G., Tan, K. K. C., (1995). "Adaptive Rejection
    Metropolis Sampling within Gibbs Sampling", Applied Statistics,
    vol. 44., p.455-472.
    [8] Hougaard, P., (1986). "Survival Models for Heterogeneous
    Populations Derived from Stable Distributions", Bimoetrika, vol. 73,
    p. 387-396.
    [9] Hougaard, P., (1986). "A Class of Multivariate Failure Time
    Distributions ", Bimoetrika, vol. 73, p. 671-678.
    [10] Huster, W. J., Brookmeyer, R., and Self,,S. G., (1989). "Modeling
    Paired Survival Data with Covariates", Biometrics, vol. 45, p. 145-
    156.
    [11] Klein, J. P., and Moeschberger, M. I., (1988). "Bounds on Net
    Survival Probabilities for Dependent Competing Risks",
    Biometrics, vol. 44 ,p. 529-538.
    [12] Lancaster, T., (1990). The Econometrics Analysis of Transition Data.
    CUP, Cambridge.
    [13] Lindley, D. V., and Singpurwalla, N. D., (1986). "Multivariate
    Distributions for the Life Lengths of Components of a System
    Sharing a Common Environment", Journal of Applied Probability,
    vol. 23, p. 418-431.
    [14] Mcgilchrist, A., and Aisbett, C. W., (1991). "Regression with Frailty
    in Survival Analysis", Biometrics, vol. 47, p. 461-466.
    [15] Pickles, A., and Crouchley, R., (1995). "A Comparison of Frailty
    Models for Multivariate Survival Data", Statistics in Medicine, vol.
    14, p. 1447-1461.
    [16] Wei, L. J., Lin, D. Y., and Weissfeld, L., (1989). "Regression
    Analysis of Multivariate Incomplete Failure Time Data by
    Modeling Marginal Distributions", Journal of the American
    Statistical Association, vol. 84, p. 1065-1073.
    [17] Wei, G. C. G., Tanner, M. A., (1990). "A Monte Carlo
    Implementation of the EM algorithm and the Poor Man`s Data
    Augmentation Algorithms", Journal of the American Statistical
    Association, vol. 85, p. 699-704.
    [18] Xue, X., (1995). Analysis of Survival Data under Heterogeneity:
    Univariate and Bivariate Frailty Models. Unpublished Ph.D. Thesis,
    School of Hygiene and Public Health, Johns Hopkins University.
    [19] 陳麗霞, (民84). "脆弱性Weibull迴歸模式之貝氏推論".國科
    會計畫, NSC-84-2415-H-004-006.
    Description: 碩士
    國立政治大學
    統計學系
    86354003
    Source URI: http://thesis.lib.nccu.edu.tw/record/#B2002001563
    Data Type: thesis
    Appears in Collections:[統計學系] 學位論文

    Files in This Item:

    There are no files associated with this item.



    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback