English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113648/144635 (79%)
Visitors : 51582800      Online Users : 817
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 商學院 > 統計學系 > 學位論文 >  Item 140.119/85878
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/85878


    Title: SIR、SAVE、SIR-II、pHd等四種維度縮減方法之比較探討
    Authors: 方悟原
    Fang, Wu-Yuan
    Contributors: 江振東
    方悟原
    Fang, Wu-Yuan
    Keywords: 維度縮減子空間
    dimension reduction subspace
    pHd
    principal Hessian directions
    SIR
    sliced inverse regression
    SAVE
    sliced average variance estimate
    SIR-II
    Date: 1998
    Issue Date: 2016-04-21 09:54:36 (UTC+8)
    Abstract: 本文以維度縮減(dimension reduction)為主題,介紹其定義以及四種目前較被廣為討論的處理方式。文中首先針對Li (1991)所使用的維度縮減定義型式y = g(x,ε) = g1(βx,ε),與Cook (1994)所採用的定義型式「條件密度函數f(y | x)=f(y |βx)」作探討,並就Cook (1994)對最小維度縮減子空間的相關討論作介紹。此外文中也試圖提出另一種適用於pHd的可能定義(E(y | x)=E(y |βx),亦即縮減前後y的條件期望值不變),並發現在此一新定義下所衍生而成的子空間會包含於Cook (1994)所定義的子空間。
    The focus of the study is on the dimension reduction and the over-view of the four methods frequently cited in the literature, i.e. SIR, SAVE, SIR-II, and pHd. The definitions of dimension reduction proposed by Li (1991)(y = g( x,ε) = g1(βx,ε)), and by Cook (1994)(f(y | x)=f(y|βx)) are briefly reviewed. Issues on minimum dimension reduction subspace (Cook (1994)) are also discussed. In addition, we propose a possible definition (E(y | x)=E(y |βx)), i.e. the conditional expectation of y remains the same both in the original subspace and the reduced subspace), which seems more appropriate when pHd is concerned. We also found that the subspace induced by this definition would be contained in the subspace generated based on Cook (1994).
    Reference: Chen, C. H., Li, K. C. (1998). Generalization of Fisher`s linear discriminant analysis via the approach of sliced inverse regression. Technical Report C-98-15, Institute of Statistical Science Academia Sinica, Taiwan, R.O.C.
    Chen, C. H., Li, K. C., Wang, J. L. (1999). Dimension reduction and censored regression. Annals of Statistics (to be appeared)
    Cook, R. D. (1994). On the interpretation of regression polts. Journal of the American Statistical Association, vol.89 p.177~189
    Cook, R. D., Weisberg, S. (1991). Comment on Li (1991). Journal of the American Statistical Association, vol.86 p.328~332
    Cook, R. D., Weisberg, S. (1994). An the introduction to regression gaphics. New York: Wiley
    Li, K. C. (1991). Sliced inverse regression for dimension reduction (with discussion). Journal of the American Statistical Association, vol.86 p.316~342
    Li, K. C. (1992). On principal Hessian directions for data visualization and dimension reduction : Another application of Stein`s lemma. Journal of the American Statistical Association, vol.87 p.1025~ 1039
    Schott, J. R. (1994). Determining the dimensionality of sliced inverse regression. Journal of the American Statistical Association, vol.89, p.141~148.
    Searle, S. R. (1982). Matrix algebra usejul for statistics. New York: Wiley
    Description: 碩士
    國立政治大學
    統計學系
    84354014
    Source URI: http://thesis.lib.nccu.edu.tw/record/#B2002001549
    Data Type: thesis
    Appears in Collections:[統計學系] 學位論文

    Files in This Item:

    File SizeFormat
    index.html0KbHTML2337View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback