English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  全文筆數/總筆數 : 115256/146303 (79%)
造訪人次 : 54532049      線上人數 : 355
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    政大機構典藏 > 理學院 > 應用數學系 > 學位論文 >  Item 140.119/85496
    請使用永久網址來引用或連結此文件: https://nccur.lib.nccu.edu.tw/handle/140.119/85496


    題名: 利用計算矩陣特徵值的方法求多項式的根
    Finding the Roots of a Polynomial by Computing the Eigenvalues of a Related Matrix
    作者: 賴信憲
    貢獻者: 王太林
    賴信憲
    關鍵詞: 傳統解多項式的方法
    三對角矩陣
    QR演算法
    polynomial root-finding
    symmetric tridiagonal matrix
    QR algorithm
    日期: 2000
    上傳時間: 2016-04-18 16:31:43 (UTC+8)
    摘要: 我們將原本求只有實根的多項式問題轉換為利用QR方法求一個友矩陣(companion matrix)或是對稱三對角(symmetric tridiagonal matrix)的特徵值問題,在數值測試中顯示出利用傳統演算法去求多項式的根會比求轉換過後矩陣特徵值的方法較沒效率。
    Given a polynomial pn(x) of degree n with real roots, we transform the problem of finding all roots of pn (x) into a problem of finding the eigenvalues of a companion matrix or of a symmetric tridiagonal matrix, which can be done with the QR algorithm. Numerical testing shows that finding the roots of a polynomial by standard algorithms is less efficient than by computing the eigenvalues of a related matrix.
    參考文獻: [1] I. Bar-On and B. Codenotti, A fast and stable parallel QRalgorithm for symmetric tridiagonal matrices, Linear Algebra Appl. 220 (1995), 63-95.
    [2] L. Brugnano and D. Trigiante, Polynomial Roots: The Ultimate Answer?, Linear Algebra Appl. 225 (1995), 207-219.
    [3] B. N. Datta, Numerical Linear Algebra and Applications, Brooks/Cole, Pacific Grove, California, 1995.
    [4] Edelman and H. Murakami, Polynomial roots from companion matrix eigenvalues, Math. Comp. 64 (1995), 763-776.
    [5] S. Goedecker, Remark on algorithms to find roots of polynomials, SIAM J. Sci. Comput. 15 (1994), 1059-1063.
    [6] IMSL User s manual, version 1.0 (1997), chapter 7.
    [7] C. Moler, Cleve s corner: ROOTS-of polynomials, The Mathworks Newsletter. 5 (1991), 8-9.
    [8] B. N. Parlett, The Symmetric Eigenvalue Problem, Prentice-Hall, Englewood Cliffs, N. J. 1980.
    [9] V. Pan, Solving a polynomial equation: Some history and recent progress, SIAM Rev. 39 (1997), 187-220.
    [10] G. Schmeisser, A real symmetric tridiagonal matrix with a given characteristic polynomial, Linear Algebra Appl. 193 (1993), 11-18.
    [11] N. Trefethen and D. Bau, Numerical Linear Algebra, SIAM, Philadelphia, 1997.
    描述: 碩士
    國立政治大學
    應用數學系
    86751004
    資料來源: http://thesis.lib.nccu.edu.tw/record/#A2002001738
    資料類型: thesis
    顯示於類別:[應用數學系] 學位論文

    文件中的檔案:

    檔案 大小格式瀏覽次數
    index.html0KbHTML2342檢視/開啟


    在政大典藏中所有的資料項目都受到原著作權保護.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋