政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/84962
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  全文筆數/總筆數 : 113318/144297 (79%)
造訪人次 : 51081198      線上人數 : 977
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    政大機構典藏 > 理學院 > 心理學系 > 學位論文 >  Item 140.119/84962
    請使用永久網址來引用或連結此文件: https://nccur.lib.nccu.edu.tw/handle/140.119/84962


    題名: 探討空間記憶之神經行為機制
    Investigation of the Neurobehavioral Mechanisms Underlying Spatial Memory
    作者: 林建佑
    貢獻者: 廖瑞銘
    林建佑
    關鍵詞: 線索學習作業
    自我中心作業
    神經毒素破壞
    鋰鹽去價值程序
    尾核次級區域
    輻射狀迷津
    大白鼠
    cue learning task
    egocentric task
    neurotoxin lesion
    LiCl devaluation
    caudate subareas
    radial arm maze
    rat
    日期: 2001
    上傳時間: 2016-04-15 16:03:24 (UTC+8)
    摘要: 本研究以神經毒素ibotenic acid破壞不同尾核區域以及鋰鹽去價值程序為操弄變項,觀測此兩種實驗操弄對於大鼠之迷津行為之影響,進而探討標誌系統之行為內涵及神經機制。實驗所採用的作業為線索學習作業以及自我中心作業,分別代表標誌系統下的線索導引策略及體位導向策略。實驗一及實驗二在於檢驗尾核功能缺損對於大鼠迷津行為之影響,從探測嘗試發現大鼠在線索學習的行為表現需依賴砂紙線索的導引,而在自我中心作業之行為則不以環境刺激為依據(實驗一A、二A),顯示大鼠在各迷津作業的行為符合標誌系統的運作原則。神經機制之操弄結果顯示在記憶習得階段,尾核破壞之受試在線索學習作業上的表現並沒有顯著變差,尾核功能缺損並未導致學習的延宕或阻斷,其進步的速度仍與控制組相同(實驗一B)。相較於線索學習作業,尾核破壞之受試在自我中心作業上的表現則明顯變差,幾乎沒有進步的趨勢(實驗二B)。而在記憶保持階段,不管是線索學習作業或自我中心作業之表現皆會因尾核破壞而顯著變差(實驗一C、二C)。實驗三及實驗四則利用鋰鹽去價值程序降低食餌之誘因價值,觀測大鼠行為有無相對應改變。結果發現去價值程序的操弄只會影響到大鼠在自我中心作業的行為表現(實驗四),而不影響其在線索學習作業之行為(實驗三)。由此可知,兩種迷津作業所形成的記憶表徵是不同的,自我中心學習歷程會將增強物表徵在聯結單位中,而線索學習之習得歷程則不會。綜合上述實驗結果,標誌系統下確實有兩個不同空間行為機制,一個為線索導引策略,另一個為體位導向策略,雖皆受到尾核的調節,但調節的程度是不同的。不管是記憶習得或保持階段,尾核在體位導向策略的運作中皆扮演重要的角色,而在線索導引策略只參與了記憶保持歷程的運作。另外,兩個空間行為機制在學習內涵上也不盡相同,以線索導引策略為依據之空間行為會形成刺激反應(S-R)的聯結型態,而以體位導向策略為依據之空間行為則會形成反應及增強物(R-S*)聯結。
    This study investigated the neurobehavioral mechanisms of taxon system of spatial memory through manipulating lesions of subareas in the caudate nucleus by ibotenic acid and lithium chloride (LiCl)-induced reward devaluation. With respect to behavioral measurement in an eight-arm radial maze, a cue learning task and an egocentric task were used for testing the guidance and orientation hypotheses of taxon system, respectively. Data from probing procedures showed that the performance of rats in the cue learning task was impaired when the cue was removed, but the performance in the egocentric task was not affected by changing the context (Experiments 1A and 2A). These results indicate that behavior reactions in two tasks are corresponding to those two operational principles of taxon system. In terms of the acquisition, deficits were significantly produced by the lesion of the dorsomedial caudate on egocentric task, while the ibotenate lesions did not affect cue learning task (Experiments 1B and 2B). For retention test, the performances in both cue learning and egocentric tasks were impaired by dorsomedial caudate lesion, no such impairment was observed from dorsolateral and posterolateral caudate lesions (Experiments 1C and 2C). In the third and fourth experiments, LiCl devaluation procedure was employed to lower the reward value of the bait in the maze. This manipulation significantly impaired the performance of egocentric task but not that of the cue learning task. These results indicate that the memory representations in the two tasks used in the present study are different. The memory representation in the egocentric task contains the reinforcer, whereas that in the cue learning task is not necessarily relevant to the reinforcer. In conclusion, the guidance and orientation hypotheses can be differentiated as behavioral mechanisms existing in the taxon system of spatial memory. Although the caudate nucleus is critically important for the operation of both hypotheses, the degrees of this brain site to get involved are different. The caudate nucleus participates in the acquisition and retention of orientation hypothesis, but only in the retention of guidance hypothesis. In addition, behavioral performance of the spatial memory using guidance hypothesis is based on forming the association of stimulus and response (S-R), while that using orientation hypothesis is based on forming the association of response and reinforcer (R-S*).
    參考文獻: 賴文崧(1996)。「兒茶酚胺神經傳遞系統與多角迷津行為之探討」。未發表之碩士論文,國立政治大學心理學研究所。
    Abraham, L., Potegal, M., & Miller, S. (1983). Evidence for caudate nucleus involvement in an egocentric spatial task: Return from passive transport. Physiological Psychology, 11, 11-17.
    Alexander, G. E., DeLong, M. R., & Strick, P. L. (1986). Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annual Review of Neuroscience, 9, 357-381.
    Ann, L., Miner, M., & Martin, S. (1997). Effects of ibotenic acid-induced loss of neurons in the medial prefrontal cortex of rats on behavioral vigilance: evidence for executive dysfunction. Journal of Psychopharmacology, 11, 169-178.
    Aosaki, T., Tsubokawa, H., Ishida, A., Watanabe, K., Graybiel, A. M., & Kimura, M. (1994). Responses of tonically active neurons in the primate’s striatum undergo systematic changes during behavioral sensorimotor conditioning. The Journal of Neuroscience, 14, 3969-3984.
    Batson, J. D., & Best, P. J. (1979). Drug-preexposure effects in flavor-aversion learning: Associative inference by conditioned environment stimuli. Journal of Experimental Psychology: Animal Behavior Processes, 5, 273-283.
    Bolles, R. C. (1972). Reinforcement, expectancy, and learning. Psychological Review, 79, 394-409.
    Colombo, P. J., Davis, H. P., & Volpe, B. T. (1989). Allocentric spatial and tactile memory impairments in rats with dorsal caudate lesions are affected by preoperative behavioral training. Behavioral Neuroscience, 103, 1242-1250.
    Colwill, R. M., & Rescorla, R. A. (1985). Postconditioning devaluation of a reinforcer affects instrumental responding. Journal of Experimental Psychology: Animal Behavior Processes, 11, 120-132.
    Cook, D., & Kesner, R. P. (1988). Caudate nucleus and memory for egocentric localization. Behavioral and Neural Biology, 49, 332-343.
    Cuello, A. C., & Kanazawa, I. (1978). The distribution of substance P immunoreactive fibers in the rat central nervous system. Journal of Comparative Neurology, 178, 129-156.
    De Bruin, J. P. C., Moita, M. P., De Brabander, H. M., & Joosten, R. N. J. M. (2001). Place and response learning of rats in a Morris water maze: Different effects of fimbria fornix and medial prefrontal cortex lesions. Neurobiology of Learning and Memory, 75, 164-178.
    Devan, B. D., Goad, E. H., & Petri, H. L. (1996). Dissociation of hippocampal and striatal contributions to spatial navigation in the water maze. Neurobiology of Learning and Memory, 66, 305-323.
    Devan, B. D., McDonald, R. J., & White, N. M. (1999). Effects of medial and lateral caudate-putamen lesions on place- and cue-guided behaviors in the water maze: Relation to thigmotaxis. Behavioural Brain Research, 100, 5-14.
    Devan, B. D., & White, N. M. (1999). Parallel information processing in the dorsal striatum: relation to hippocampal function. The Journal of Neuroscience, 19, 2789-2798.
    Dickinson, A., Balleine, B., Watt, A., Gonzales, F., & Boakes, R. A. (1995). Motivational control after extended instrumental training. Animal Learning & Behavior, 23, 197-206.
    Dunnett, S. B., & Iversen, S. D. (1981). Learning impairments following selective kainic acid-induced lesions within the neostriatum of rats. Behavioural Brain Research, 2, 189-209.
    Gerfen, C. R. (1984). The neostriatal mosaic: Compartmentalization of corticostriatal input and striatonigral output system. Nature, 311, 461-464.
    Harrison, R., & Nissen, H. (1941). The response of chimpanzees to relative and absolute position in delayed response problems. Journal of Comparative Psychology, 31, 447-455.
    Hauber, W., & Schmidt, W. J. (1994). Differential effects of the dorsomedial and dorsolateral caudate-putamen on reaction time performance in rats. Behavioural Brain Research, 60, 211-215.
    Heimer, L., Zahm, D. S., & Alheid, G. F. (1995). Basal ganglia. In G. Paxino (Ed.) The Rat Nervous System (pp. 579-628). San Diego : Academic Press
    Holland, P. C., & Rescorla, R. A. (1975). The effects of two ways of devaluing the unconditioned stimulus after first- and second-order appetitive conditioning. Journal of Experimental Psychology: Animal Behavior Processes, 1, 355-363.
    Hull, C. L. (1943). Principles of behavior (pp. 68-83). New York: Appleton-Century-Crofts.
    Jarrard, L. E. (1983). Selective hippocampal lesions and behavior: Effects of kainic acid lesions on performance of place and cue tasks. Behavioral Neuroscience, 97, 873-889.
    Jarrard, L. E., Okaichi, H., Steward, O., & Goldschmidt, R. B. (1984). On the role of hippocampal connections in the performance of place and cue tasks: Comparisons with damage to hippocampus. Behavioral Neuroscience, 98, 946-954.
    Kesner, R. P. (1991). Neurobiological views of memory. In J. L. Martinez & R. P. Kesner(Ed.) Learning and memory: A biological view (pp. 499-547). San Diego: Academic Press.
    Kesner, R. P., Bolland, B. L., & Dakis, M. (1993). Memory for spatial locations, motor responses, and objects: triple dissociation among the hippocampus, caudate nucleus, and extrastriate visual cortex. Experimental Brain Research, 93, 462-470.
    Kesner, R. P., Farnsworth, G., & DiMattia, B. (1989). Double dissociation of egocentric and allocentric space following medial prefrontal and parietal cortex lesions in the rat. Behavioral Neuroscience, 103, 956-961.
    Kimura, M. (1995). Role of basal ganglia in behavioral learning. Neuroscience Research, 22, 353-358.
    Knolton, B. J., Shapiro, M. L., & Olton, D. S. (1989). Hippocampal seizures disrupt working memory performance but not reference memory acquisition. Behavioral Neuroscience, 103, 1144-1147.
    Liang, K. C., Hu, S. J., & Chang, S. C. (1996). Formation and retrieval of inhibitory avoidance memory: Differential roles of glutamate receptors in the amygdala and medial prefrontal cortex. Chinese Journal of Physiology, 39, 155-166.
    Lyford, G. Y., & Jarrard, L. E. (1991). Effects of the comparative NMDA antagonist CPP on performance of a place and cue radial maze task. Psychobiology, 19, 157-160.
    Massawinkel, H., & Whishaw, I. Q. (1999). Homing with locale, taxon and dead reckoning strategies by foraging rats: sensory hierarchy in spatial navigation. Behavioural Brain Research, 99, 143-152.
    Melcer T., & Timberlake, W. (1985). Poison avoidance and patch(location) selection in rats. Animal Learning & Behavior, 13, 60-68.
    McDonald, R. J., & White, N. M. (1993). A triple dissociation of memory systems: Hippocampus, Amygdala, and Dorsal Striatum. Behavioral Neuroscience, 107, 3-22.
    McDonald, R. J., & White, N. M. (1994). Parallel information processing in the water maze: Evidence for independent memory systems involving dorsal striatum and hippocampus. Behavioral and Neural Biology, 61, 260-270.
    Merchant, K. M., Dobner, P. R., & Dorsa, D. M. (1992). Differential effects of haloperidol and clozepine on neurotensin gene transcription in rat neostriatum. Journal of Neuroscience, 12, 652-663.
    Miller, S., Potegal, M., & Abraham, L. (1983). Vestibular involvement in a passive transport and return task. Physiological Psychology, 11, 1-10.
    Mitchell, J. A., & Hall, G. (1985). Response-reinforcer associations after caudate-putamen lesions in the rat: Spatial discrimination and overshadowing-potentiation effects in instrumental learning. Behavioral Neuroscience, 99, 1074-1088.
    Mitchell, J. A., & Hall, G. (1988a). Caudate-Putamen lesions in the rat may impair or potentiate maze learning depending upon availability of stimulus cues and relevance of response cues. The Quarterly Journal of Experimental Psychology, 40B, 243-258.
    Mitchell, J. A., & Hall, G. (1988b). Learning in rats with caudate-putamen lesions: Unimpaired classical conditioning and beneficial effects of redundant stimulus cues on instrumental and spatial learning deficits. Behavioral Neuroscience, 102, 504-514.
    Moghaddam, M., & Bures, J. (1996). Contribution of egocentric spatial memory to place navigation of rats in the Morris water maze. Behavioural Brain Research, 78, 121-129.
    Morris, R. G. M., Garrud, P., Rawlins, J. N. P., & O’Keefe, J. (1982). Place navigation impaired in rats with hippocampal lesion. Nature, 297, 681-683.
    Okaichi, H., & Oshima, Y. (1990). Choice behavior of hippocampectomized rats in the radial arm maze. Psychobiology, 18, 416-421.
    O’Keefe, J. (1983). Spatial memory within and without the hippocampal system. In W. Seifert (Ed.) Neurobiology of the hippocampus (pp. 375-405). New York: Academic Press.
    O’Keefe, J., & Burgess, N. (1996). Geometric determinants of the place fields of hippocampal neuron. Nature, 381, 425-428.
    O’Keefe, J., & Dostrovsky, J. (1971). The hippocampus as a spatial map: Preliminary evidence from unit activity in the freely moving rat. Brain Research, 34, 171-175.
    O’Keefe, J., & Nadel, L. (1978). The hippocampus as a cognitive map (pp. 62-101). Oxford, England: Oxford University Press.
    O’Keefe, J., & Nadel, L. (1979). Precis of O’Keefe and Nadel’s “The Hippocampus as a Cognitive Map”. The Behavioural and Brain Sciences, 2, 487-533.
    Oliveira, M. G. M., Bueno, O. F. A., Pomarico, A. C., & Gugliano, E. B. (1997). Strategies used by hippocampal- and caudate-putamen-lesioned rats in learning task. Neurobiology of Learning and Memory, 68, 32-41.
    Olton, D. S., & Samuelson, R. J. (1976). Remembrance of places passed: Spatial memory in rats. Journal of Experimental Psychology: Animal Behavior Processes, 2, 97-116.
    Packard, M. G., Hirsh, R., & White, N. M. (1989). Differential effects of fornix and caudate nucleus lesions on the two radial maze task: Evidence for multiple memory systems. The Journal of Neuroscience, 9, 1465-1472.
    Packard, M. G., & McGaugh, J. L. (1994). Quinpirole and d-amphetamine administration posttraining enhances memory on spatial and cued discriminations in a water maze. Psychobiology, 22, 54-60.
    Packard, M. G., & Teather, L. A. (1997). Double dissociation of hippocampal and dorsal-striatal memory systems by posttraining intracerebral injections of 2-Amino-5-Phosphonopentanoic Acid. Behavioral Neuroscience, 111, 543-551.
    Packard, M. G., & Teather, L. A. (1998). Amygdala modulation of multiple Memory systems: Hippocampus and caudate-putamen. Neurobiology of Learning and Memory, 69, 163-203.
    Packard, M. G., & White, N. M. (1990). Lesions of the caudate nucleus selectively impair “reference memory” acquisition in the radial maze. Behavioral and Neural Biology, 53, 39-50.
    Packard, M. G., & White, N. M. (1991). Dissociation of hippocampus and caudate nucleus memory systems by posttraining intracerebral injection of dopamine agonists. Behavioral Neuroscience, 105, 295-306.
    Pisa, M., & Cyr, J. (1990). Regionally selective roles of the rats striatum in modality-specific discrimination learning and forelimb reaching. Behavioural Brain Research, 37, 281-292.
    Potegal, M. (1969). Role of the caudate nucleus in spatial orientation of rats. Journal of Comparative and Physiological Psychology, 69, 756-764.
    Rescorla, R. A. (1987). A pavlovian analysis of goal-directed behavior. American Psychologist, 42, 119-129.
    Restle, F. (1957). Discrimination of cues in mazes: A resolution of the “Place-VS.-Response” question. Psychological Review, 64, 217-227.
    Sage, J. R., & Knowlton, B. J. (2000), Effects of US devaluation on Win-stay and Win-shift radial maze performance in rats. Behavioral Neuroscience, 114, 295-306.
    Tolman, E. C. (1948). Cognitive maps in rats and men. Psychological Review, 55, 189-208.
    Tolman, E. C., & Gleitman, H. (1949). Studies in learning and motivation: I. Equal reinforcements in both end-boxes, followed by shock in one end-box. Journal of Experimental Psychology, 39, 810-819.
    Tolman, E. C., Ritchie, B. F., & Kalish, D. (1946). Studies in spatial learning. I. Orientation and the short-cut. Journal of Experimental Psychology, 1, 13-24.
    Trytek, E. S., White, I. M., Schroeder, D. M., Heidenreich, B. A., & Rebec, G. V. (1996). Localization of motor- and nonmotor-related neurons within the matrix-striosome organization of rat striatum. Brain Research, 707, 221-227.
    Viaud, M. D., & White, N. M. (1989). Dissociation of visual and olfactory conditioning in the neostriatum of rats. Behavioural Brain Research, 32, 31-42.
    White, N. M. (1989). A functional hypothesis concerning the striatal matrix and patch: Mediation of S-R memory and reward. Life Sciences, 45, 1943-1957.
    White, N. M. (1997). Mnemonic functions of the basal ganglia. Current Opinion in Neurobiology, 7, 164-169.
    Whishaw, I. Q., Mittleman, G., Bunch, S.T., & Dunnett, S. B. (1987). Impairments in the acquisition, retention and selection of spatial navigation strategies after medial caudate-putamen lesions in rats. Behavioural Brain Research, 24, 125-138.
    描述: 碩士
    國立政治大學
    心理學系
    資料來源: http://thesis.lib.nccu.edu.tw/record/#A2002001153
    資料類型: thesis
    顯示於類別:[心理學系] 學位論文

    文件中的檔案:

    檔案 大小格式瀏覽次數
    index.html0KbHTML2381檢視/開啟


    在政大典藏中所有的資料項目都受到原著作權保護.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋