政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/84950
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  全文筆數/總筆數 : 113451/144438 (79%)
造訪人次 : 51315600      線上人數 : 863
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    政大機構典藏 > 理學院 > 應用數學系 > 學位論文 >  Item 140.119/84950
    請使用永久網址來引用或連結此文件: https://nccur.lib.nccu.edu.tw/handle/140.119/84950


    題名: 線性規劃求解方法之研究—個案分析
    Search Direction Analysis in Linear Programming -- Case Study
    作者: 莊文華
    貢獻者: 陸行
    莊文華
    關鍵詞: 線性規劃
    求解方法
    投影法
    Linear programming
    Search direction
    Projection
    日期: 2001
    上傳時間: 2016-04-15 16:02:55 (UTC+8)
    摘要: 線性規劃的求解方法依幾何觀點可區分為單體法(Simplex Method)和起源於Karmarkar的內點法(Interior Point Method),無論在理論上或應用上這兩者的許多變體仍然不斷地在改進中。Dantzig的單體法和它變體的演算法是從邊上角點走到另一角點直至到達最佳點,內點法則是透過這個可行地區的內部的可行點走到可行點的方法。眾所週知,當遭遇最壞案例時單體法求解速度的函數表示成指數形式;而內點法卻成多項式形式。就一般案例而言,實驗證據提議,當問題大小為小型時,以單體法求解速度較佳。而內點法僅僅在很大規模的線性規劃時,其解法優於以單體法為基礎的方法。
    封面頁
    證明書
    致謝詞
    論文摘要
    目錄
    表格目錄
    圖例目錄
    1 序論
    1.1 研究動機
    1.2 研究目的
    1.3 研究架構及範圍
    2 線性規劃的搜尋方向之探討
    2.1 線性規劃發展簡介
    2.2 文獻回顧
    2.2.1 仿射演算法
    2.2.2 有效搜尋法
    2.2.3 鄰近頂點上的單體演算法
    2.2.4 最陡峭邊單體演算法
    3 搜尋方向與投影法
    3.1 搜尋方向
    3.2 投影法
    4 投影矩陣的數值計算
    5 新演算法
    6 實證研究
    6.1 新演算法求解過程
    6.2 退化解問題
    6.3 起始點的影響
    7結果與討論
    8未來研究工作
    參考書目
    附錄
    附錄一
    附錄二
    附錄三
    附錄四
    附錄五
    參考文獻: Arbel, A., Exploring Interior-Point Linear Programming. The MIT Press, (1993)
    Barnes, E. R., A Variation on Algorithm for Sloving Linear Programming Problems. Mathematical Programming 36, 174-182, (1986).
    Bazaraa, M. S. and C. M. Shetty, Nonlinear Programming Theory and Algorithms. John Wiley and Sons publishers(1979)
    Bixby, R. E. and J. W. Gregory, I. J. Lustig, R. E. Marsten and D. F. Shanno, Very large-scale linear programming: A case study in combining interior point and simplex methods. Operations Research 40, 885-897, (1992).
    Dantzig, G. B., Linear Programming and Extensions. Princeton University Press, Princeton N.J., (1963).
    Dikin, I. I., Iterative Solution of Problems of Linear and Quadratic Programming. Soviet Mathematics Doklady, 8, 674-675, (1967)
    Dikin, I. I., O Skhodimosti Odnogo Iteratsionnogo Protsessa.(in Russian), Upravlyaemye Sistemy, 12, 54-60, (1794)
    Fang , S. C. and S. Puthenpura., Linear Optimization and Extensions. Prentice-Hall, Englewood Cliffs New Jersey, USA,(1993).
    Forrest, J. J. and Donald Goldfarb, Steepest-Edge Simplex Algorithms for Linear Programming. Mathematical Programming 57, 341-374(1992).
    Goldfarb, D. and J. K. Reid, A Practicable Steepest-Edge Simplex Algorithm. Mathematical Programming 12, 361-371(1977).
    Huard, P. and A. Auslender, Point-to-set maps and mathematical programming. Amsterdam ; New York : North-Holland Pub. Co. (1979)
    Hurley, W., Adjacent Vertex Algorithms: More Experimental Results on Random Problems. Computers and Operations Research 21, 535-541, (1994).
    Karmarkar, N. K., A new polynomial time algorithm for linear programming. Combinatorica 4, 373-395, (1984).
    Khachiyan, L. G., A Polynomial Algorithm in Linear Programming., Doklady Akademiia Nauk SSSR 244:s, 1093-1096, (1979), translated in Soviet Mathematics Doklady 20:1, 191-194,(1979)
    Klee, V. and G. J. Minty, How Good is the Simplex Algorithm? In O. Shisha(Ed.) Inequalities 3. Academic Press, New York,(1972).
    Kuhn, H. W. and R. E. Quandt, An Experimentical Study of Simplex Method. In Proceedings of the Symposia in Applied Mathematics(Edited by Metropolis et al.) XV. Providence, R.I.(1963).
    Luh, H. and Ray Tsaih, An Efficient Search Direction for Linear Programming Problems. Computers and Operations Research forthcoming. Terlaky, T., Interior Point Methods of Mathematical Programming. Kluwer Academic publishers, (1996)
    Trefethen, L. N. and David Bau, Numerical Linear Algebra., The Society for Industrial and Applied Mathematics, (1997)
    Vanderbei, R. J., Affine-Scaling for Linear Programs with Free Variables, Mathematical Programming 43, 31-44, (1989).
    Vanderbei, R. J., M. S. Meketon and B. A. Freedman., A Modiffication of Karmarkar`s Linear Programming Algorithm. Algorithmica 1, 395-407, (1986).
    Ye, Y., Interior Point Algorithms Theory and Analysis., John Wiley and sons, (1997)
    Winston, W. L., Operations Research Applitions and Algorithms., Duxbury Press(1994)
    Wolfe, P. and L. Culter, Experiments in linear programming. In Recent Advances in Mathematical Programming(Edited by Graves and Wolfe P.). Mcgraw-Hill, New York(1963).
    描述: 碩士
    國立政治大學
    應用數學系
    資料來源: http://thesis.lib.nccu.edu.tw/record/#A2002001141
    資料類型: thesis
    顯示於類別:[應用數學系] 學位論文

    文件中的檔案:

    檔案 大小格式瀏覽次數
    index.html0KbHTML2467檢視/開啟


    在政大典藏中所有的資料項目都受到原著作權保護.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋