English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113303/144284 (79%)
Visitors : 50806274      Online Users : 674
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 理學院 > 應用數學系 > 學位論文 >  Item 140.119/84948
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/84948


    Title: 模糊時間數列的屬性預測
    Qualitive Forecasting for Fuzzy Time Series
    Authors: 林玉鈞
    Contributors: 吳柏林
    林玉鈞
    Keywords: 模糊時間數列
    模糊關係
    模糊規則
    準確度
    隸屬度函數
    Fuzzy time series
    Fuzzy relation
    Fuzzy rule
    Accuracy
    Membership Function
    Date: 2001
    Issue Date: 2016-04-15 16:02:51 (UTC+8)
    Abstract: 本文嘗試以模糊理論的觀念,應用到時間數列分析上。研究重點包括模糊關係、模糊規則庫和模糊時間數列模式建構與預測等。我們首先給定模糊時間數列模式的概念與一些重要性質。接著提出模糊規則庫的定義,以及模式建構的流程,並以模糊關係方程式的推導,提出模糊時間數列模式建構方法。最後,利用提出的方法,對台灣地區加權股票指數建立模糊時間數列模式,並對未來進行預測,且考慮以平均預測準確度來做預測效果之比較。這對於財務金融的未來走勢分析將深具意義。
    The paper has attempted to apply the concept of fuzzy method on the analysis of time series. This reserch is also to include fuzzy relation, fuzzy rule base, fuzzy time series model constructed and forecasting. First, we`ll define the concept of fuzzy time series model and some important properties. Next, the definition of fuzzy rule base will also be put forward, along with procedure of model constructed, the formation of fuzzy relation polynomial, and the methods to construct fuzzy time series model. At last, with the above methods, we`ll build up fuzzy time series model on Taiwan Weighted Index and predict future trend while examine the predictive results with average forecasting accuracy. This shall carry profund signifigornce on the analysis of future trend in terms of financialism.
    封面頁
    證明書
    致謝詞
    論文摘要
    目錄
    1、前言
    2、模糊集合理論與模糊時間數列
    2.1 模糊理論
    2.2 隸屬度函數(Membership Function)
    2.3 模糊時間數列分析
    3、模糊時間數列模式建構步驟與預測流程
    3.1 模糊規則
    3.2 平均預測秩階準確度
    3.3 模糊時間數列的分析與預測
    4、台灣股票加權指數之模糊時間數列
    4.1資料分析
    4.2模糊模式建構
    5、結論
    參考文獻
    Reference: 吳柏林,曾能芳 (1998) 模糊回歸參數估計及在景氣對策信號之分析應用。中國統計學報。36(4), 399-420.
    吳柏林,許毓云 (1999) 模糊統計分析在臺灣地區失業率應用。中國統計學報。37(1), 37-52.
    Chen, S. M. (1996) Forecasting enrollments based on fuzzy time series. Fuzzy Sets and Systems, 81, 311-319.
    Clymer, J., P. Corey and J. Gardner (1992) Discrete Event Fuzzy Airport Control. IEEE Transactions on Systems, Man, and Cybernetics, 22(2), 343-351。
    Cutsem, B. V. and I. Gath (1993) Detection of Outliers and Robust Estimation Using Fuzzy Clustering. Computational Statistics and Data Analysis, 15, 47-61。
    Dubois, D. and H. Prade (1991) Fuzzy sets in approximate reasoning, Part I: Inference with possibility distributions. Fuzzy Sets and Systems, 40, 143-202.
    Graham, B. P. and R. B. Newell (1989) Fuzzy adaptive control of a first-order process. Fuzzy Sets and Systems, 31, 47-65.
    Hathaway, R. J. and J. C. Bezdek (1993) Switching Regression Models and Fuzzy Clustering. IEEE Transactions of Fuzzy Systems, 1, 195-204。
    Hendershot, G. and P. Placek (Eds) (1981) Predicting Fertility. Lexington, MA: health and Co.
    Kosko, B. (1992) Neural Network and Fuzzy Systems. Englewood Cliffs, NJ: Prentice-Hall.
    Jang, J.-S., C. T. Sun and E. Mizutani (1997) Neuro-Fuzzy and Soft Computing. Pretice-Hall International, Inc.
    Lowen, R. (1990) A fuzzy language interpolation theorem. Fuzzy Sets and Systems, 34, 33-38.
    Manski, C. (1990) The Use of Intention Data to Predict Behavior: A Best Case Analysis. Journal of the American Statistical Association, 85, 934-940.
    Manton, K., K. Woodbury and H. Tolley (1994) Statistical Applications – Using Fuzzy Set. John Willy and Sons, Inc.﹐New York.
    Nguyen, H. and V. Kreinovich (1997) Applications of Continuous Mathematics to Computer Science. Kluwer Academic.
    Nguyen, H. and M. Sugeno (1998) Fuzzy Modeling and Control. CRC Press.
    Nguyen, H. and E. Walker (1999) A first Course in Fuzzy Logic. (Second Edition) CRC Press.
    Nie, J. (1997) Nonlinear time-series forecasting: a fuzzy-neural approach. Neurocomputing, 16, 63-76.
    Romer, C., A. Kandel, and E. Backer (1995) Fuzzy Partitions of the Sample space and Fuzzy Parameter Hypotheses. IEEE Transactions on Systems, Man and Cybernetics, 25(9), 1314-1321.
    Ross, T. (1995) Fuzzy Logic with Engineering Applications. McGraw-Hill, Inc. New York.
    Ruan, D. (1995) Fuzzy Set Theory and Advanced Mathematical Application. Kluwer Academic.
    Ruspini, E. (1991) Approximate Reasoning: past, present, future. Information Sciences, 57, 297-317.
    Song, Q. and B. S. Chissom (1993) Fuzzy time series and its models. Fuzzy Sets and Systems, 54, 269-277.
    Song, Q. and B. S. Chissom (1993) Forecasting enrollments with fuzzy time series – Part I. Fuzzy Sets and Systems, 54, 1-9.
    Song, Q. and B. S. Chissom (1994) Forecasting enrollments with fuzzy time series – part II. Fuzzy Sets and Systems, 62,1-8.
    Song, Q., R. P. Leland and B. S. Chissom (1997) Fuzzy stochastic fuzzy time series and its models. Fuzzy Sets and Systems, 88, 333-341.
    Tong, R. M. (1978) Synthesis of fuzzy models for industrial processes. Int. J. Gen. Syst., Vol.4, 143-162.
    Tseng, T. and C. Klein (1992) A new Algorithm for fuzzy multicriteria decision making. International Journal of Approximate Reasoning, 6, 45-66.
    Werners, B. (1987) An interactive fuzzy programming system. Fuzzy Set and System, 23, 131-147.
    Wong, Z. and G.J. Klir (1992) Fuzzy Measure Theory. New York: Plenum Press.
    Wu, B. and M. Chen (1999) Use fuzzy statistical methods in change periods detection. Applied Mathematics and Computation, 99, 241-254.
    Wu, B. and S. Hung (1999) A fuzzy identification procedure for nonlinear time series: with example on ARCH and bilinear models. Fuzzy Set and System, 108,275-287.
    Wu, B. and C. Sun (1996) Fuzzy statistics and computation on the lexical semantics. Language, Information and Computation (PACLIC 11), 337-346. Seoul, Korea.
    Xu, C. W. and Y. Z. Lee (1987) Fuzzy model identification and self-learing for dynamic systems. IEEE Transactions on Systems, Man, and Cybernetics, Vol. SCM-17, 683-689.
    Yang, M. (1993) A Survey of Fuzzy Clustering. Mathl. Compu. Modelling, 18(11), 1-16.
    Yoshinari, Y., W. Pedrycz and K. Hirota (1993) Construction of Fuzzy Models through Clustering Techniques. Fuzzy Sets and Systems, 54, 157-165.
    Zadeh, L. A. (1965) Fuzzy Sets. Information and Control, 8, 338-353.
    Zimmermann, H. J. (1991) Fuzzy Set Theroy and its Applications. Boston: Kluwer Academi.
    Description: 碩士
    國立政治大學
    應用數學系
    87751011
    Source URI: http://thesis.lib.nccu.edu.tw/record/#A2002001139
    Data Type: thesis
    Appears in Collections:[應用數學系] 學位論文

    Files in This Item:

    File SizeFormat
    index.html0KbHTML2253View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback